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Intraday Volatility - Applications

The trading cost of executing a large order of size Q is
TC = ±{B/S}(pave − p0)/p0 where
▶ p0 is the mid-quote just prior to the start of execution, and
▶ pave is the notional weighted average execution price
▶ pave =

∑N
i=1 piqi/Q, where Q =

∑N
i=1 qi

▶ TC is also referred to as an order’s slippage to arrival.

Forecasts of TC are used widely in automated quoting (market
making) and pricing trades, e.g. block trades. Primary factors in
TC models include
▶ Bid-ask spread
▶ Q as a percentage of volume
▶ Volatility over the horizon of the trade



Intraday Volatility - Applications

A main driver of execution algorithm performance is spread
capture (as TC depends on spread.) Spread capture occurs
when limit orders are filled passively without improving the best
bid or offer.

Factors driving spread capture
▶ The ability to obtain order book queue priority
▶ Anticipating short-term volatility

Given a time horizon T , volatility bands, σ
√

T , can help to
optimize limit price selection.

[Yes, a graphic would be nice here.]



Intraday Volatility - Theoretical Background

Main reference: Hansen and Lunde (2006) (H-L)

Assume the efficient and unobservable log price process p∗
t

follows a continuous semi-martingale

p∗
t = p∗

0 +

∫ t

0
µτdτ +

∫ t

0
στdW τ (1)

where W is a standard Wiener process, µτ and στ are well
behaved (càdlàg, etc) drift and volatility processes.

Observable prices are given by pt , so the noise process is

ut ≡ pt − p∗
t

ut is hypothesized to arise from actual market frictions such as
price discreteness and the so-called bid-ask bounce. Thus, ut
is referred to as microstructure noise.



Intraday Volatility - Theoretical Background
We are interested in estimators of the integrated variance (IV)

IV (a,b) ≡
∫ b

a
σ2
τdτ

Continuity of p∗
t implies that IV is equal to the quadratic

variation (QV) of p∗, so we can turn to estimators of QV.

QV is the stochastic limit of the following sequence defined on
the partition of the interval [a,b] into m subintervals

a = t0,m < t1,m < · · · < tm,m = b.

The quadratic variation of p∗
t on the partition with m

subintervals:

QV ∗
m(a,b) ≡

m∑
i=1

(p∗
ti − p∗

ti−1
)2



Theoretical Background

Of course, p∗ is not observable (and neither is σ), so we turn to
the observable pt , which leads to the realized variance

RVm(a,b) ≡
m∑

i=1

(pti − pti−1)
2

which introduces bias and statistical inconsistency (RVm(a,b)
does not converge in probability to IV (a,b) as m → ∞.).

To analyze the bias and convergence properties of RVm, we
define the following

y∗
i,m ≡ p∗(ti,m)− p∗(ti−1,m)

yi,m ≡ p(ti,m)− p(ti−1,m)

ei,m ≡ u(ti,m)− u(ti−1,m)



Sampling Schemes

Starting with the complete record of trades and quotes, we
have to choose how to reduce, or sample, these to a single
price series {p}.

Given observed (bid, ask, mid, or trade) prices at times
t0 < · · · < tN , there are 2 standard methods of calendar time
sampling (CTS) to construct artificial prices at time τ ∈ [tj , tj+1)

▶ p(τ) ≡ ptj (previous tick)

▶ p̃(τ) ≡ ptj +
τ−tj

tj+1−tj
(ptj+1 − ptj ) (linear interpolation.)

Tick time sampling (TTS) refers to the selection of prices as a
function of tick times (essentially index value when sorted by
event time.). Usually TTS selects trades at regular index
increments, such as every kth price.



Sampling Schemes

Linear interpolation has the property that for a fixed sample of
size N, RVm(a,b)

p→ 0 as m → ∞.

That is, RVm computed from linearly interpolated prices
converges in probability to 0 as the sampling frequency goes to
infinity.

Hence, linearly interpolated prices are not appropriate for
purposes of estimating high-frequency volatility (yet they are
still used in places.)



The Bias of Realized Variance

Assumption 1: The noise process u is covariance stationary
with mean 0 and autocovariance function given by
π(s) ≡ E [u(t)u(t + s)].

Theorem 1 (H-L) Given (1) and assumption 1

E [RV (m)− IV ] = 2ρm + 2m
[
π(0) + π

(
b − a

m

)]
, (2)

where ρm ≡ E(
∑m

i=1 y∗
i,mei,m).

This follows from

RVm =
m∑

i=1

y∗
i,j + 2

m∑
i=1

ei,my∗
i,m +

m∑
i=1

e2
i,m

Thus, the bias is a function of the correlation between the
efficient returns and noise, and autocovariances of the noise.



Volatility Signature Plots

A volatility signature plot displays sample averages of estimates
of RV as a function of the sampling frequency m

RV m ≡ n−1
n∑

t=1

RVt ,m

H-L provide numerous volatility signature plots for Alcoa (AA)
and Microsoft (MSFT) using different RV estimators, sampling
methods, and samples of bid, ask, mid and trade prices from
2000 and 2004.

The following slides show their baseline results using the naive
estimator compared with a robust estimator (horizontal red
line.)



Volatility Signature Plots - Time Sampling
Hansen and Lunde: Realized Variance and Market Microstructure Noise 131

Figure 1. Volatility Signature Plots for RV t Based on Ask Quotes ( ), Bid Quotes ( ), Mid-Quotes ( ), and Transaction
Prices ( ). The left column is for AA and the right column is for MSFT. The two top rows are based on calendar time sampling, in contrast
to the bottom rows that are based on tick time sampling. The results for 2000 are the panels in rows 1 and 3, and those for 2004 are in rows 2 and 4.

The horizontal line represents an estimate of the average IV, σ̄ 2 ≡ RV (1 tick)
ACNW30

, that is defined in Section 4.2. The shaded area about σ̄ 2 represents
an approximate 95% confidence interval for the average volatility.



Volatility Signature Plots - Tick Sampling

Hansen and Lunde: Realized Variance and Market Microstructure Noise 131

Figure 1. Volatility Signature Plots for RV t Based on Ask Quotes ( ), Bid Quotes ( ), Mid-Quotes ( ), and Transaction
Prices ( ). The left column is for AA and the right column is for MSFT. The two top rows are based on calendar time sampling, in contrast
to the bottom rows that are based on tick time sampling. The results for 2000 are the panels in rows 1 and 3, and those for 2004 are in rows 2 and 4.

The horizontal line represents an estimate of the average IV, σ̄ 2 ≡ RV (1 tick)
ACNW30

, that is defined in Section 4.2. The shaded area about σ̄ 2 represents
an approximate 95% confidence interval for the average volatility.



Observations

▶ Low to middle sampling frequencies appear approximately
unbiased.

▶ Bias increases with sampling frequency and is pronounced
at ultra-high levels.

▶ Mid-quotes (blue diamond) behave differently, with RV
decreasing as sampling frequency increases.

▶ Microstructure noise is negatively correlated with efficient
returns.

The last point follows because the second term in the bias
expression (2) is always nonnegative. H-L note that quote
revisions are asynchronous, and that upward revisions in the
efficient price may affect the ask price first, causing the spread
to widen by only half a tick.



The Realized Kernel Estimator

Barndorff, Nielsen, Hansen, Lunde, and Shepard (2008)
propose the following estimator that exhibits a number of
improvements (see Hautsch 8.1.2.)

RVK ≡ γ̂0 +
H∑

h=1

k
(

h − 1
H

)
(γ̂h + γ̂−h) (3)

where γ̂h ≡
∑N

i=1 yiyi+h, the hth sample autocovariance and
k(·) is a kernel function. The Tukey-Hanning2 kernel is
recommended

k(x) = sin2(π/2(1 − x)2)

with bandwidth H = 5.74ζ
√

n and ζ being rather tedious to
estimate, but a good exercise in sampling and computing RVs
(next homework.)
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