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1. Data description and pre-processing

We are handling the dataset containing stock price data for 6 different stocks, sampled at
1 minute frequency, on the trading days from Jan. 2nd, 2017 to Dec. 29th, 2017. The
dataset contains 252 trading days with trading time from 9:30 am to 4:00 pm (391 minutes
in total). After examining the data, we discover the following irregular records and modify
them accordingly:

(1) Day 327 in the dataset, Nov. 24th, 2017, is a half trading day and contains only 211
trading minutes. We delete this day for all 6 stocks.

(2) Stock a and d both contain 93 irregular price values, (0.0 for stock a and 1.0 for stock
d), we replace these prices by the prices one-minute prior to them.

(3) Stock f contains 6 trading days without any price changes (no volatility), we delete
these 6 days for stock f.

(4) Stock a, ¢, d, f contain 164,31,111,1371 missing values, respectively. For stock f,
most missing values appear on the 6 zero-volatility trading days mentioned above. We fill
these NaN values by their most recent available prices (indicating a zero volatility over this
period). If the missing period is at the beginning of a trading day (starts from 9:30 am), we
fill these NaN values by their next available prices.

(5) As indicated by the price time series plot in Figure 1 in the appendix, stock c
experienced a 45% price drop at the opening minute on day 149. We delete this day for
stock c.

Our goal is to forecasting the volatility over the next month following the end of the
samples for all 6 stocks. Consider the price sequence as a stochastic process, for any time
interval [t — 1,¢], the empirical estimation of the quadratic variation of a stochastic process
is given by the following realized variance, RVi11 = Z;i? Tt2+jA,Av where ri4ja A is the
return (either percentage or logarithm return) over the period [t+ (j —1)A, t+jA]. Here we
consider the partition of time interval [¢,¢4 1] into 1/A equal sub-intervals. For this project,
t and t 4+ 1 can be seen as the closing minute for day ¢ and day ¢ + 1, respectively, and we
consider the even mesh over this period. Therefore, \/RV; measures the daily volatility on
day t, including the intraday volatility as well as the close-to-open volatility.

Barndorff-Nielsen and Shephard (2002) derives the consistency of RV to quadratic vari-
ation and asymptotic normality result under the stochastic volatility model. The theory
suggests that we should sample prices as often as possible to better approximate the un-
derlying quadratic variation based on realized variance. However, in practice, the benefit
of very high frequency sampling is swamped by the market micro-structure effects, such as
liquidity effects, bid/ask bounce and mis-recordings (Merton, 1980; Roll, 1984). For this
project, we consider the 5-minute sampling frequency, which is a common choice in many
references (see, e.g., Ghysels et al. (2006); Hansen and Lunde (2011)) and in practice.
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We include the daily volatility time series plot for all 6 stocks in Figure 2 in the appendix.
We discover that stock b has a low volatility period at the first half of the year, and a high
volatility period at the second half of the year. To give a better prediction for the next
monthly volatility, we only use the latter part data for stock b. It also should be noted that
all stocks have some period with very large volatility. These data points should be handled
properly during the training process.

Table 1 in the appendix presents summary statistics of stocks’ daily volatility.

2. Model description

In this section, we give a brief introduction to some candidate models we use later.

Inspired by the HARCH model, Corsi (2009) proposes an additive cascade model of
different volatility components designed to mimic the actions of different types of market
participants. This model is known as the heterogeneous autoregressive model of realized
variance (HAR-RV), and has the following form,

OP(RVip) = Bo + BaOP(RV;) + BuwOP(RVi—s55) + BmOP(RVi—21,21) + & (2.1)

where RV}, is the averaged daily realized variance over the period [t,t + h] and OP is some
operator, which could be OP(z) = /z, OP(z) = log(x) or identity mapping OP(z) =
x. Therefore, the model predicts future volatility using a daily, a weekly and a monthly
component, respectively. The HAR-RV model can be seen as a prediction which uses the
exponential smoothing (piecewise constant) of lagged values of RV;.

The HAR-RV model has some variants. One may consider a continuous-time jump
diffusion process for price. Barndorff-Nielsen and Shephard (2004) define the standardized
realized bipower variation as BViy1 = uy> Zjli% [N ‘rt+(j_1)A7A}, where 1 = /2/7.
We can therefore detect the jump component by Ji41 = max {RV;y; — BV;41,0}.

Andersen et al. (2007) propose the following HAR-RV-J model,

OP(RV ) = Bo + BaOP(RV;) + BuwOP(RVi_55) + BmOP(RVi_21,21) + BsOP(J;) + €.
(2.2)

Huang and Tauchen (2005) propose the following ratio-statistic to identify significant jumps,

(RVip1 — BVip )RV,
(M1_4 + 2/;1_2 — 5) max {1, TQt_HBV;Ql}

Zypy=AT2

To take market micro-structure noise into consideration, we adopt the modification of real-
ized bipower variation and tripower quarticity from Andersen et al. (2007) as follows,

1/A

BVipr = py (1 —24)7" Z rerinal [rerg-2)a,
j=3
1/A

TQu1 = A7 (1 = 44)~ Z rerjanlt |7"t+(j—2)A,A’4/3 }Tt+(j—4)A,A’4/3,
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where f1,/3 = 22/31(7/6)I'(1/2)~!. Based on this ratio-statistic, we can split realized vari-
ance into two parts, significant jump and residual,

Jiv1,0 = 1 Zi1 > @o)[RVig1 — BVita], Ciyr,a = 1 Zi1 < @o)|RVig1 + 1[Zi41 > $o|BViya].

Here @, is the a-quantile for standard normal distribution, we let o = 0.975 in our case. We
now introduce our next candidate model, the HAR-RV-CJ model, proposed by Andersen
et al. (2007) as follows,

OP(RV:p,) = Bo+BcpOP(Cy) + BewOP(Ci—s55) + BomOP(Ci—21,21)
+B8spOP(J;) + BiwOP(Ji—55) + Brm OP(Ji—21.21) + €. (2.3)

Finally, we consider the Mized Data Sampling (MIDAS) regression model proposed by
Ghysels et al. (2006, 2007). Specifically,

kmax

OP(RV;p) = Bo+ B1 Y bk, 0)OP(Xy_pi1) + &, (2.4)
k=1

691k+.4.+9QkQ

where we consider the parameterization of b(k,0) as follows, b(k,0) = S 1T 07

The main idea of MIDAS regression is to use regressors which may have ditferent frequency
from the response variable. We consider three type of regressors below in the experiment,
the realized variance RV}, the absolute return AR;, AR; = Z;L ? |7++ja,a| and the modified
realized bipower variation BV;. It has been stated in Barndorfl-Nielsen and Shephard (2004);
Ghysels et al. (2006) that the use of absolute return (and realized bipower variation) could
capture the volatility better.

3. Numerical results

In this section, we perform the model fitting and selection on all 6 stocks, using models
mentioned above. Specifically, we consider the following 6 models as candidate models, HAR-
RV model (2.1), HAR-RV-J model (2.2), HAR-RV-CJ model (2.3) with modified realized
bipower variation and tripower quarticity, and MIDAS regression (2.4) with regressor RV,
ARy, BV, respectively. Our setups are summarized as follows,

(1) For MIDAS regression, we set kmax = 9 and use the past 10 day volatility information
to forecast the future monthly volatility. We consider the case where § = (61, 62) in b(k,0).

(2) Each stock has approximate 200 samples to work on. We split the dataset into two
part, the training set contains the first 70% of the data and is used to fit different models.
We evaluate the performances of different models on the rest part of the data, conduct model
selections and estimate the standard deviations for the models’ predictions.

(3) Stock f has a step-wise price pattern, and the realized bipower variations for f are
always 0. In this case, we exclude the HAR-RV-CJ model (2.3) and the MIDAS regression
(2.4) with regressor BV;.

(4) To remove the effect of some large values in the dataset, we consider the logarithm
transformation on both sides of the regression.
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(5) The HAR-type models are fitted by least squares and are performed by scikit-learn
Ridge regressor in Python. We use scipy optimization method to solve # and Linear regressor
in scikit-learn to solve g, 51 for the MIDAS models.

We now report the best model for each stock, the performance of the model, the pre-
diction for the next month volatility, and the fitted parameters. A comparison between the
ground truths and our predictions is plotted in Figure 3 and Figure 4 in the appendix, for
both the training dataset and the validation dataset.

Stock a: the best model is the HAR-RV-CJ model (2.3), with validation MSE 6.44. The
point estimation for next month is 8.03 with the 95% confidence interval [5.35,12.05]. The
fitted parameters are,

(Bo, Bip, Baw, Bim, Bep, Bew, Bom) = (4.15,—0.04,0.04, —0.16,0.12,0.1,0.38).

Stock b: the best model is the HAR-RV model (2.1), with validation MSE 28.65. The
point estimation for next month is 71.94 with the 95% confidence interval [62.34, 83.02]. The
fitted parameters are,

(Bo, Bd, Bw, Bm) = (6.84,0.13,0.03,0.15).

Stock c: the best model is the MIDAS regression (2.4) with regressor BV;, with validation
MSE 3.77. The point estimation for next month is 10.77 with the 95% confidence interval
[8.75,13.26]. The fitted parameters are,

(61,05, Bo, B1) = (—0.68,0.04, 4.32,0.59).

Stock d: the best model is the HAR-RV-CJ model (2.3), with validation MSE 30.03. The
point estimation for next month is 105.57 with the 95% confidence interval [95.42,116.79].
The fitted parameters are,

(Bo, Bips Baw, Bam, Bep, Bew, Boar) = (9.53,0.00, —0.03, 0.06, 0.00, 0.02, —0.09).

Stock e: the best model is the MIDAS regression (2.4) with regressor BV;, with validation
MSE 0.14. The point estimation for next month is 13.64 with the 95% confidence interval
[12.91,14.41]. The fitted parameters are,

(61,62, Bo, B1) = (0.02,—0.1,5.37, —0.07).

Stock f: the best model is the HAR-RV model (2.1), with validation MSE 19.86. The
point estimation for next month is 13.07 with the 95% confidence interval [7.62, 22.45]. The
fitted parameters are,

(B0, Bas Buws Brm) = (4.71,0.04,0.1,0.06).

4. Discussions

From the results above, generally speaking, the two most promising model would be the
MIDAS regression (2.4) with regressor BV; and HAR-RV-CJ model (2.3) with modified
realized bipower variation and tripower quarticity. These two models also give strong out-
of-sample performances on different data experiment in the literature.

Additional table and plots can be found in the separate appendix file. We also provide
the jupyter notebook file with code and extra results.
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