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This paper considers the nonparametric estimation of an instrumental regression problem. Generally,
for any function ϕ ∈ L2

F (Z), we call it an instrumental regression if,

Y = ϕ(Z) + U, E[U |W ] = 0, (1)

where F is the joint c.d.f. of Y, Z,W . Now we introduce the following two notations:

(i) T : L2
F (Z)→ L2

F (W ), ϕ→ Tϕ = E[ϕ(Z)|W ].
(ii) T ∗ : L2

F (W )→ L2
F (Z), ψ → T ∗ψ = E[ψ(W )|Z].

Using these notations, we can now translate equation (1) into,∫
ϕ(z)

fZ,W (z, w)

fW (w)
dz =

∫
y
fY,W (y, w)

fW (w)
dy

⇐⇒ Tϕ = r (2)

where f(y, z, w) is the density function of F w.r.t. the Lebesgue measure and r(w) =
fY,W (y, w)/fW (w).

The inverse problem (2) can be seen as solving a infinite-dimension linear system to obtain ϕ(·), if
we treat the density function f(y, z, w) as known.

Given some mild condition on the joint distribution F , there exists a singular values decomposition
of the adjoint Hilbert–Schmidt operators T and T ∗ such that for orthonormal sequences of L2

F (Z)
(ϕi, i ≥ 0) and L2

F (W ) (ψi, i ≥ 0), and real numbers λ0 = 1 ≥ λ1 ≥ . . .,
Tϕi = λiψi, i ≥ 0

T ∗ψi = λiϕi, i ≥ 0.

Then the solution ϕ of the inverse problem (2) is identifiable and the existence of ϕ is guaranteed by,

ϕ =
∑
i≥0

1

λi
〈r, ψi〉ϕi. (3)

However, since we do not know the density f of F , we use some density estimation method to
approximate f in practice. Therefore, as λi can be arbitrarily small (λi → 0 as i → ∞), a noisy
measurement from r to r + δψi leads to a perturbed solution ϕ+ δ

λi
ϕi, which can be infinitely far

from the true solution ϕ. This problem is said to be ill-posed under this circumstance.

One way to deal with the ill-posed inverse problem is looking for a regularized solution (same as the
common linear regression case). A Tikhonov regularized solution is defined as,

ϕα = (αI + T ∗T )
−1
T ∗r =

∑
i≥0

λi
α+ λ2i

〈r, ψi〉ϕi. (4)

or, equivalently,

ϕα = argmin
ϕ

[
‖r − Tϕ‖2 + α‖ϕ‖2

]
. (5)

Equation (5) can be seen as a functional form of linear regression. It can be shown that

lim
α→0
‖ϕ− ϕα‖2 = O

(
αβ∧2

)
,
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where β depends on the degrees of smoothness of the solution as well as the degree of ill-posedness
of the inverse problem. And a iterated regularization schemes,

ϕα(1) = (αI + T ∗T )
−1
T ∗Tϕ

ϕα(k) = (αI + T ∗T )
−1
[
T ∗Tϕ+ αϕα(k−1)

]
· · ·

, (6)

admits a solution of

ϕα(k) =
∑
i≥0

(
λ2i + α

)k − αk
λi (α+ λ2i )

k
〈ϕ,ϕi〉ϕi, (7)

and satisfies
lim
α→0
‖ϕ− ϕα(k)‖

2 = O
(
αβ∧2k

)
,

which can take advantage of a degree of smoothness β for ϕ larger than 2.

Now we turn to the statistical estimation problem. Let h ≡ hN → 0 denote a bandwidth 8 and let
Kh(·, ·) denote a univariate generalized kernel function with the properties Kh(u, t) = 0 if u > t or
u < t− 1; for all t ∈ [0, 1],

h−(j+1)

∫ t

t−1
ujKh(u, t)du =

{
1, if j = 0
0, if 1 ≤ j ≤ l − 1

We call Kh(·, ·) a univariate generalized kernel function of order l. And multivariate generalized
kernel function of order l can be given by products of univariate generalized kernel functions of
order l. Given two multivariate generalized kernel functions KZ,h and KW,h, with dimension p and
q respectively, we can estimate the density function of F as,

f̂z,W (z, w) =
1

Nhp+q

N∑
n=1

KZ,h (z − zn, z)KW,h (w − wn, w) ,

f̂W (w) =
1

Nhq

N∑
n=1

KW,h (w − wn, w) ,

f̂Z(z) =
1

Nhp

N∑
n=1

KZ,h (z − zn, z) .

This can give us the estimators of T, T ∗ as well as r,

(T̂ϕ)(w) =

∫
ϕ(z)

f̂Z,W (z, w)

f̂W (w)
dz,

(
T̂ ∗ψ

)
(z) =

∫
ψ(w)

f̂Z,W (z, w)

f̂Z(z)
dw,

r̂(w) =

∑N
n=1 ynKW,h (w − wn, w)∑N
n=1KW,h (w − wn, w)

.

Therefore, the final estimation of our solution to the inverse problem (2) is then given by,

ϕ̂αN =
(
αNI + T̂ ∗T̂

)−1
T̂ ∗r̂, (8)

where the regularization parameter αN is a positive number depending on N .

It can be shown that our estimator ϕ̂αN also converges to the true solution ϕ with the cost of the
nonparametric estimation of conditional expectations negligible. For some bandwith hN and αN ,

‖ϕ̂αN − ϕ‖2 = OP

[
N−(β∧2)/((β∧2)+2)

]
. (9)

To conclude, this paper considers the nonparametric estimation of a regression function. The core of
estimation is using a kernel-based nonparametric density estimation method. Under general mild
conditions, the consistency of the nonparametric instrumental variables estimator is ensured. And
the convergence rate of this estimator is strongly related to the degree of ill-posedness of the inverse
problem (2).
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