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Consider n independent X1, · · · , Xn, each is normally distributed Xi ∼ N (θi, 1),∀i = 1, · · · , n.
We would like to estimate θi’s measured by the risk function:

R(θ, θ̂) = EL(θ, θ̂) = E

[
n∑

i=1

(θi − θ̂i)2
]
. (1)

James and Stein (1961) show that for n ≥ 3, the James-Stein estimators of the form,

θ̂JSi =

(
1− c∑n

j=1X
2
j

)
Xi, ∀ 0 < c < 2(n− 2), (2)

(with c = n− 2 the best choice) dominate the ordinary estimator θ̂i = Xi under risk function 1.

Efron and Morris (1973) provide the Efron-Morris estimators of the form,

θ̂EM
i = X̄ +

(
1− c∑n

i=1

(
Xi − X̄

)2
)(

Xi − X̄
)
, ∀ 0 < c < 2(n− 3), (3)

(with c = n− 3 the best choice) beats the ordinary estimators when n ≥ 4.

This paper gives an novel explanation of why those shrinkage estimators work better using a regression
setup. To be specific, consider the regression task of E[θ|X], the least square estimator with intercept
is,

θ̂i = θ̄ + β̂
(
Xi − X̄

)
, where β̂ =

∑n
i=1

(
Xi − X̄

) (
θi − θ̄

)∑n
i=1

(
Xi − X̄

)2 . (4)

The Efron-Morris estimator is conducted by replacing θ̄ and
∑n

i=1

(
Xi − X̄

) (
θi − θ̄

)
by X̄ and∑n

i=1

(
Xi − X̄

)2 − (n− 1), their unbiased estimators, respectively.

The James-Stein estimator can be derived similarly with the least square estimator without intercept,

θ̂i = β̂
(
Xi − X̄

)
, where β̂ =

∑n
i=1Xiθi∑n
i=1X

2
i

. (5)

The James-Stein estimator is conducted by replacing
∑n

i=1Xiθi by its unbiased estimators∑n
i=1X

2
i − n.

A simple proof of both Efron-Morris and James-Stein estimators can be derived from this regression
perspective, using the fact that the orthogonality of the least square fitted values and the residuals can
be exploited to seperate the least square loss RSSLS from the loss function L(θ, θ̂) for any estimator
θ̂.

This paper gives a clear and simple argument on why ordinary estimator fails in this estimation task
as it is based on th wrong regression line E[X|θ] instead of E[θ|X] and therefore the least square
estimator, (along with its unbiased estimators) dominates the ordinary estimator.
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