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To better interpret model and reduce the prediction accuracy, many methods have been produced, e.g.,
subset selection, ridge regression and garotte estimator. Consider data {(xi, yi)}ni=1 where x ∈ Rp,
ridge regression has the following form,

(α̂, β̂) = argmin
α,β

{
n∑
i=1

(
yi − α− β>xi

)2}
, ‖β‖22 ≤ t, (1)

for some hyper-parameter t ≥ 0. The garotte estimator (Breiman, 1995) minimizes,

(α̂, β̂) = argmin
α,β


n∑
i=1

yi − α− p∑
j=1

cj β̂
o
jxij

2
 , cj ≥ 0,

p∑
j=1

cj ≤ t, (2)

where β̂
o
=
(
β̂o1 , · · · , β̂op

)>
is the OLS estimator.

This paper proposes a new method called “lasso” for the estimation task in linear model. Lasso
estimator is a shrinkage estimation method and explicitly set some coefficients to 0, it has a continuous
path and leads to an interpretable model. The author illustrates the advantage of lasso estimator over
its counterparts under the orthonormal design case and provides parameter estimation algorithm.

The lasso estimator is defined by the following optimization problem,

(α̂, β̂) = argmin
α,β

{
n∑
i=1

(
yi − α− β>xi

)2}
, ‖β‖1 ≤ t. (3)

Under orthonormal design,X>X = I , and we can easily derive the closed form solution for lasso
estimator as,

β̂j = sign(β̂oj )(|β̂oj | − λ)+.

The ridge estimator,

β̂j =
1

1 + λ
β̂oj .

The garotte estimator,

β̂j =

(
1− λ

β̂o2j

)+

β̂oj .

and the best subset estimator,

β̂j = β̂oj 1|β̂o
j |>λ

.

Please see details in the appendix. As shown later, if the design is not orthonormal, lasso produces
the same estimator while ridge and garotte ones will rely on the covariance structure of the response
data vector.

For the hyper-parameter tuning, this paper provides three different methods where the first two
are classical technique in model selection, namely 5-fold cross validation and the generalized
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cross validation statistic. A final Stein’s method is proposed with closed form solution and better
computation performance over the first two.

The parameter estimation methods presented here are computationally expensive and does not utilize
the piecewise linear structure of lasso’s regularization path. Therefore, they cannot be compared with
later algorithms like Least Angle Regression or Dantzig (Dantzig uses a different loss function).

To conclude, this paper considers a novel regularization scheme for linear regression task. Although
using l1 norm as the regularizer seems to be natural these days, it indeed was a breakthrough back
then. Lasso estimator is similar to its previous counterparts, the garotte estimator, but is more stable
under different OLS estimators and covariance structure ofX . However, the parameter estimation
methods are crude and the standard error calculation for inference task is unadjusted. And it does not
touch any theoretical analysis of the lasso estimator, which leaves many future work.
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Appendix

Under orthonormal design,X>X = I , and the OLS estimator is β̂o =X
>y. The Lagrangian form

of ridge regression is,

min
β

(y −Xβ)2 + λβ>β.

Therefore,

2X>
(
y −Xβ̂ridge

)
+ 2λβ̂ridge = 0

=⇒ β̂ridge =
(
X>X + λI

)−1
X>y =

1

1 + λ
β̂o.

Similarly, for lasso estimator,

argmin
β

1

2
(y −Xβ)2 + λ‖β‖1 = argmin

β
−y>Xβ +

1

2
β>β + λ‖β‖1

= argmin
β

−β̂
>
o β +

1

2
β>β + λ‖β‖1.

Therefore, the minimization task for each j = 1, · · · , p is,

β̂lasso
j = argmin

βj

−β̂ojβj +
1

2
β2
j + λ|βj |.

WLOG, assume β̂oj > 0, then β̂lasso
j must > 0 as well or else we can always flip the sign of β̂lasso

j
and get a lower loss. Therefore,

β̂lasso
j = argmin

βj>0
−β̂ojβj +

1

2
β2
j + λβj = sign

(
β̂oj

)(
β̂oj − λ

)+
For the garotte estimator,

argmin
C

1

2

(
y −XCβ̂o

)2
+ λtr(C), C = diag(c1, · · · , cp), cj ≥ 0.

Therefore the optimization task is,

argmin
C

−y>XCβ̂o +
1

2
β̂
>
o CX

>XCβ̂o + λtr(C)

= argmin
C

−β̂oCβ̂o +
1

2
β̂
>
o C

2β̂o + λtr(C), C = diag(c1, · · · , cp), cj ≥ 0.

The garotte estimator for each j = 1, · · · , p is,

β̂gar
j = β̂oj c

gar
j = β̂oj argmin

cj

−cj β̂o2j +
1

2
c2j β̂

o2
j + λcj =

(
1− λ

β̂o2j

)
β̂oj .

Finally, the best subset selection choose the k response variables with larger simple linear regression
coefficient. Under orthonormal design, the simple linear regression coefficient is simply y>xj where
xj = (x1j , · · · , xnj)>. It is equivalent to select the k largest OLS estimation coefficient since
β̂o =X

>y.
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