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Motivation
Markowitz’s portfolio has never been fully embraced by practitioners, among other reasons
because

1 variance is not a good measure of risk in practice since it penalizes both the unwanted
high losses and the desired low losses: the solution is to use alternative measures for
risk, e.g., VaR and CVaR,

2 it is highly sensitive to parameter estimation errors (i.e., to the covariance matrix Σ and
especially to the mean vector µ): solution is robust optimization and improved
parameter estimation,

3 it only considers the risk of the portfolio as a whole and ignores the risk diversification
(i.e., concentrates risk too much in few assets, this was observed in the 2008 financial
crisis): solution is the risk parity portfolio.

We will address here the risk diversification among the assets by properly
redefining the portfolio formulation.
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Returns
Let us denote the log-returns of N assets at time t with the vector rt ∈ RN (i.e.,
rit = log pi,t − log pi,t−1).
Note that the log-returns are almost the same as the linear returns Rit = pi,t−pi,t−1

pi,t−1
, i.e.,

rit ≈ Rit.
The time index t can denote any arbitrary period such as days, weeks, months, 5-min
intervals, etc.
Ft−1 denotes the previous historical data.
Econometrics aims at modeling rt conditional on Ft−1.
rt is a multivariate stochastic process with conditional mean and covariance matrix
denoted as (Feng and Palomar 2016)1

µt ≜ E [rt | Ft−1]

Σt ≜ Cov [rt | Ft−1] = E
[
(rt − µt)(rt − µt)T | Ft−1

]
.

1Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends in Signal Processing, Now Publishers, 2016.
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i.i.d. model

For simplicity we will assume that rt follows an i.i.d. distribution (which is not very
innacurate in general).

That is, both the conditional mean and conditional covariance are constant:

µt = µ,

Σt = Σ.

Very simple model, however, it is one of the most fundamental assumptions for many
important works, e.g., the Nobel prize-winning Markowitz portfolio theory (Markowitz
1952)2.

2H. Markowitz, “Portfolio selection,” J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Parameter estimation

Consider the i.i.d. model:
rt = µ + wt,

where µ ∈ RN is the mean and wt ∈ RN is an i.i.d. process with zero mean and constant
covariance matrix Σ.
The mean vector µ and covariance matrix Σ have to be estimated in practice based on T
observations.
The simplest estimators are the sample estimators:

sample mean: µ̂ = 1
T

∑T
t=1 rt

sample covariance matrix: Σ̂ = 1
T−1

∑T
t=1(rt − µ̂)(rt − µ̂)T.

Many more sophisticated estimators exist, namely: shrinkage estimators, Black-Litterman
estimators, etc.
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Parameter estimation

The parameter estimates µ̂ and Σ̂ are only good for large T, otherwise the estimation
error is unacceptable.
For instance, the sample mean is particularly a very inefficient estimator, with very noisy
estimates (Meucci 2005)3.
In practice, T cannot be large enough due to either:

unavailability of data or
lack of stationarity of data.

As a consequence, the estimates contain too much estimation error and a portfolio design
(e.g., Markowitz mean-variance) based on those estimates can be severely affected
(Chopra and Ziemba 1993)4.
Indeed, this is why Markowitz portfolio and other extensions are rarely used by
practitioners.

3A. Meucci, Risk and Asset Allocation. Springer, 2005.
4V. Chopra and W. Ziemba, “The effect of errors in means, variances and covariances on optimal portfolio

choice,” Journal of Portfolio Management, 1993.
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Portfolio return

Suppose the capital budget is B dollars.
The portfolio w ∈ RN denotes the normalized dollar weights of the N assets such that
1Tw = 1 (so Bw denotes dollars invested in the assets).
For each asset i, the initial wealth is Bwi and the end wealth is

Bwi (pi,t/pi,t−1) = Bwi (Rit + 1) .

Then the portfolio return is

Rp
t =

∑N
i=1 Bwi (Rit + 1)− B

B =
N∑

i=1
wiRit ≈

N∑
i=1

wirit = wTrt

The portfolio expected return and variance are wTµ and wTΣw, respectively.
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Performance measures

Expected return: wTµ

Volatility:
√

wTΣw
Sharpe Ratio (SR): expected return per unit of risk

SR = wTµ− rf√
wTΣw

where rf is the risk-free rate (e.g., interest rate on a three-month U.S. Treasury bill).
Drawdown: decline from a historical peak of the cumulative profit X(t):

D(T) = max
t∈[0,T]

X(t)− X(T)

VaR (Value at Risk): quantile of the loss.
ES (Expected Shortfall) or CVaR (Conditional Value at Risk): expected value of the
loss above some quantile.
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Practical constraints

Capital budget constraint:
1Tw = 1.

Long-only constraint:
w ≥ 0.

Dollar-neutral or self-financing constraint:

1Tw = 0.

Holding constraint:
l ≤ w ≤ u

where l ∈ RN and u ∈ RN are lower and upper bounds of the asset positions, respectively.
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Practical constraints

Leverage constraint:
∥w∥1 ≤ L.

Cardinality constraint:
∥w∥0 ≤ K.

Turnover constraint:
∥w−w0∥1 ≤ u

where w0 is the currently held portfolio.

Market-neutral constraint:
βTw = 0.
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Risk control

In finance, the expected return wTµ is very relevant as it quantifies the average benefit.

However, in practice, the average performance is not enough to characterize an
investment and one needs to control the probability of going bankrupt.

Risk measures control how risky an investment strategy is.

The most basic measure of risk is given by the variance (Markowitz 1952)5: a higher
variance means that there are large peaks in the distribution which may cause a big loss.

There are more sophisticated risk measures such as downside risk, VaR, ES, etc.

5H. Markowitz, “Portfolio selection,” J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Mean-variance tradeoff

The mean return wTµ and the variance (risk) wTΣw (equivalently, the standard
deviation or volatility

√
wTΣw) constitute two important performance measures.

Usually, the higher the mean return the higher the variance and vice-versa.

Thus, we are faced with two objectives to be optimized: it is a multi-objective
optimization problem.

They define a fundamental mean-variance tradeoff curve (Pareto curve).

The choice of a specific point in this tradeoff curve depends on how agressive or
risk-averse the investor is.
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Mean-variance tradeoff
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Markowitz mean-variance portfolio (1952)

The idea of the Markowitz mean-variance portfolio (MVP) (Markowitz 1952)6 is to
find a trade-off between the expected return wTµ and the risk of the portfolio measured
by the variance wTΣw:

maximize
w

wTµ− λwTΣw
subject to 1Tw = 1

where wT1 = 1 is the capital budget constraint and λ is a parameter that controls how
risk-averse the investor is.

This is a convex quadratic problem (QP) with only one linear constraint which admits a
closed-form solution:

wMVP = 1
2λ

Σ−1 (µ + ν1) ,

where ν is the optimal dual variable ν = 2λ−1TΣ−1µ
1TΣ−11 .

6H. Markowitz, “Portfolio selection,” J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Global Minimum Variance Portfolio (GMVP)

The global minimum variance portfolio (GMVP) ignores the expected return and focuses
on the risk only:

minimize
w

wTΣw
subject to 1Tw = 1.

It is a simple convex QP with solution

wGMVP = 1
1TΣ−11

Σ−11.

It is widely used in academic papers for simplicity of evaluation and comparison of
different estimators of the covariance matrix Σ (while ignoring the estimation of µ).
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Drawbacks of Markowitz’s formulation

Markowitz’s portfolio has never been fully embraced by practitioners, among other reasons
because

1 variance is not a good measure of risk in practice since it penalizes both the unwanted
high losses and the desired low losses: the solution is to use alternative measures for
risk, e.g., VaR and CVaR,

2 it is highly sensitive to parameter estimation errors (i.e., to the covariance matrix Σ and
especially to the mean vector µ): solution is robust optimization and improved
parameter estimation,

3 it only considers the risk of the portfolio as a whole and ignores the risk diversification
(i.e., concentrates risk too much in few assets, this was observed in the 2008 financial
crisis): solution is the risk parity portfolio.

We will address here the risk diversification among the assets by properly
redefining the portfolio formulation.
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Lack of diversification of Markowitz portfolio
Markowitz mean-variance portfolio (MVP) is typically concentrated in very few assets, while
GMVP is more diversified (but not totally):
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Motivation

The Markowitz mean-variance portfolio has never been fully embraced by practitioners,
among other reasons because

it only considers the risk of the portfolio as a whole and ignores the risk diversification (i.e.,
concentrates risk too much in few assets, this was observed in the 2008 financial crisis)
it is highly sensitive to the estimation errors in the parameters (i.e., small estimation errors in
the parameters may change completely the designed portfolio) (Chopra and Ziemba 1993)7

Although portfolio management did not change much during the 40 years after the
seminal works of Markowitz and Sharpe, the development of risk budgeting techniques
marked an important milestone in deepening the relationship between risk and asset
management.

7V. Chopra and W. Ziemba, “The effect of errors in means, variances and covariances on optimal portfolio
choice,” Journal of Portfolio Management, 1993.
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Motivation

Since the global financial crisis in 2008, risk management has particularly become more
important than performance management in portfolio optimization

risk parity became a popular financial model after the global financial crisis in 2008 (Asness
et al. 2012; Qian 2005).

The alternative risk parity portfolio design has been receiving significant attention from
both the theoretical and practical sides because it

diversifies the risk, instead of the capital, among the assets
is less sensitive to parameter estimation errors.

Today, pension funds and institutional investors are using this approach in the
development of smart indexing and the redefinition of long-term investment policies.
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From “dollar” to risk diversification

Risk parity is an approach to portfolio management that focuses on allocation of risk
rather than allocation of capital.

The risk parity approach asserts that when asset allocations are adjusted to the same
risk level, the portfolio can achieve a higher Sharpe ratio and can be more resistant to
market downturns.

While the minimum variance portfolio tries to minimize the variance (with the
disadvantage that a few assets may be the ones contributing most to the risk), the risk
parity portfolio tries to constrain each asset (or asset class, such as bonds, stocks, real
estate, etc.) to contribute equally to the portfolio overall volatility.
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From “dollar” to risk diversification

The term “risk parity” was coined by Edward Qian from PanAgora Asset Management
(Qian 2005) and was then adopted by the asset management industry.

Some of its theoretical components were developed in the 1950s and 1960s but the first
risk parity fund, called the “All Weather” fund, was pioneered by Bridgewater
Associates LP in 1996.

Interest in the risk parity approach has increased since the late 2000s financial crisis as
the risk parity approach fared better than traditionally constructed portfolios.

Some portfolio managers have expressed skepticism about the practical application
of the concept and its effectiveness in all types of market conditions but others point to
its performance during the financial crisis of 2007-2008 as an indication of its potential
success.
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From “dollar” to risk diversification
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Risk contribution
One of the important concepts in portfolio management is quantifying the risk of
individual components to the total portfolio risk
Given a portfolio w ∈ RN and the return covariance matrix Σ, the portfolio volatility is

σ(w) =
√

wTΣw.

Following Euler’s theorem, the volatility can be decomposed as

σ (w) =
N∑

i=1
wi

∂σ

∂wi
=

N∑
i=1

wi (Σw)i√
wTΣw

The marginal risk contribution (MRC) of the ith asset to the total risk σ(w) is defined
as

MRCi = ∂σ

∂wi
= (Σw)i√

wTΣw
measures the sensitivity of the portfolio volatility to the ith asset weight
MRC can be defined based on other risk measures, like VaR and CVaR.
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Risk contribution

The risk contribution (RC) from the ith asset to the total risk σ(w) is defined as

RCi = wi
∂σ

∂wi
= wi (Σw)i√

wTΣw

Observe that (from Euler’s theorem)

N∑
i=1

RCi = σ(w).

The relative risk contribution (RRC) is defined as the ratio of its RC to the total
portfolio risk σ(w):

RRCi = RCi
σ(w) = wi (Σw)i

wTΣw

so that ∑N
i=1 RRCi = 1.
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Risk parity portfolio (RPP)

Goal: to allocate the weights so that all the assets contribute the same amount of risk,
effectively “equalizing” the risk.
The risk parity portfolio (RPP) or equal risk portfolio (ERP) equalizes the risk
contributions:

RCi = σ(w)/N

or
RRCi = 1/N.

Note the parallel with the equal weight portfolio (EWP) (aka uniform portfolio):

wi = 1/N.

While the EWP equalizes the capital allocation wi = 1/N, the RPP equalizes the risk
allocation RRCi = 1/N.
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Risk contribution of EWP
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Risk contribution of RPP
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Risk budgeting portfolio (RBP)
The RPP aims at allocating the total risk evenly across the assets.
More generally, the risk budgeting portfolio (RBP) allocates the risk according to the
risk profile determined by the weights b (with 1Tb = 1 and b ≥ 0):

RCi = biσ(w)

or
RRCi = bi.

We can rewrite RRCi = wi(Σw)i
wTΣw = bi simply as

wi (Σw)i = biwTΣw, i = 1, . . . , N.

Obviously, RPP is a special case of RBP with bi = 1/N.
We will consider the more general RBP and we will generally call it RPP with some abuse
of terminology
In general, finding a risk parity portfolio is not trivial.
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Risk contribution of RBP
Risk budgeting portfolio with budget b ∝ (2, 2, 2, 1, 1, 1, 1, 1, 1):
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RPP: The diagonal case

Suppose that the covariance matrix of the returns is diagonal, Σ = Diag(σ2), and that
the portfolio has the constraints 1Tw = 1 and w ≥ 0.
We can then write the risk parity/budgeting constraints wi (Σw)i = biwTΣw as

w2
i σ2

i = bi
N∑

j=1
w2

j σ2
j

or simply
w2

i σ2
i ∝ bi

which leads to
wi ∝

√
bi/σi.

Observe that the portfolio is inversely proportional to the assets volatilities.
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RPP: The diagonal case

The RPP in the diagonal case is then

wi =
√

bi/σi∑N
j=1

√
bj/σj

, i = 1, . . . , N.

or, in terms of Σ,
wi =

√
bi/
√

Σii∑N
j=1

√
bj/

√
Σjj

, i = 1, . . . , N.

However, for non-diagonal Σ or with other additional constraints, a closed-form solution
does not exist in general and some optimization procedures have to be constructed.
The previous diagonal solution can be used even when Σ is not diagonal and is then
called naive risk budgeting portfolio.
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Risk contribution of naive RPP
The risk contribution of the naive RPP is not perfectly equalized (as expected):
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Inverse volatility portfolio

Similar to RPP, the aim of inverse volatility portfolio (IVP) is to control the portfolio risk.
The IVP is defined as

w = σ−1

1Tσ−1

where σ2 = Diag(Σ).
Lower weights are given to high volatility assets and higher weights to low volatility assets
IVP is also called “equal volatility” portfolio since the weighted constituent assets have
equal volatility:

sd(wiri) = wiσi = 1/N.

Observe that the IVP coincides with the naive risk parity portfolio.
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RPP: Unveiling the hidden convexity

Consider the risk budgeting equations for an arbitrary covariance matrix Σ:

wi (Σw)i = biwTΣw, i = 1, . . . , N

with 1Tw = 1 and w ≥ 0.
If we define x = w/

√
wTΣw, then we can rewrite the risk budgeting equations as

xi (Σx)i = bi or, more compactly in vector form, as

Σx = b/x

with x ≥ 0 and we can always recover the portfolio by normalizing: w = x/(1Tx).
At this point, we can use a nonlinear multivariate root finder for Σx = b/x. For example,
in R we can use the package rootSolve.
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Risk contribution of vanilla RPP
The risk contribution of the vanilla RPP is perfectly equalized (unlike the naive diagonal
design):
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RPP: Unveiling the hidden convexity

Interestingly, Spinu (2013)8 realized that precisely the risk budgeting equation Σx = b/x
corresponds to the gradient of the convex function f(x) = 1

2xTΣx− bT log(x) set to zero:

∇f(x) = Σx− b/x = 0.

This is precisely the optimality condition for the minimization of f(x).
Thus, we can finally formulate the risk budgeting problem as the following convex
optimization problem:

minimize
x≥0

1
2xTΣx− bT log(x)

which has optimality condition Σx = b/x.

8F. Spinu, “An algorithm for computing risk parity weights,” SSRN, 2013. [Online]. Available:
https://ssrn.com/abstract=2297383.

D. Palomar (HKUST) Risk Parity Portfolio 46 / 81

https://ssrn.com/abstract=2297383


RPP: Unveiling the hidden convexity

Griveau-Billion et al. (2013)9 proposed a slightly different formulation (also convex):

minimize
x≥0

√
xTΣx− bT log(x)

with optimality condition Σx√
wTΣw

= b/x or Σx
σ = b/x.

It looks like the optimal solution is not what we want, but after a careful inspection we
can conclude that it is just a different normalization factor from w.
Simply define x̃ = x/σ1/2 = w/σ3/2 to obtain the optimality condition

Σx̃ = b/x̃

from which we can recover the portfolio by normalizing: w = x̃/(1Tx̃).
9T. Griveau-Billion, J.-C. Richard, and T. Roncalli, “A fast algorithm for computing high-dimensional risk

parity portfolios,” SSRN, 2013. [Online]. Available: https://ssrn.com/abstract=2325255.
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RPP: Unveiling the hidden convexity
Kaya and Lee (2012)10 proposed yet another reformulation in convex form as the solution
to

maximize
x≥0

bT log(x)

subject to σ(x) ≤ σ0.

Ignoring the nonnegativity constraint, the Lagrangian of this constrained convex
optimization problem is

L(x; λ) = bT log(x) + λ(σ0 −
√

xTΣx)
with gradient

∇xL(x; λ) = b/x− λ
Σx√

wTΣw
Defining x̃ = (λ1/2/σ1/2)x, we can rewrite ∇xL(x; λ) = 0 as

b/x̃ = Σx̃
which is the desired risk parity/budgeting condition.

10H. Kaya and W. Lee, “Demystifying risk parity,” Neuberger Berman, 2012.
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Solving the RPP problem
A direct way is to attempt to directly solve the nonlinear equations Σx = b/x with a
nonlinear multivariate root finder:

in R we can use the function multiroot from the package rootSolve
in Matlab we can use the function fsolve.

An indirect way is to solve some of the previous convex formulations:

minimize
x≥0

1
2xTΣx− bT log(x)

Unfortunately, these convex problems do not conform with the classes most solvers
embrace (i.e., LP, QP, QCQP, SOCP, SDP, GP, etc.).
We can still solve them with a general-purpose solver:

in R we can use the function optim
in Matlab we can use the function fmincon

But if we really aim for speed and computational efficiency, there are simple iterative
algorithms that can be tailored to the problem at hand, like the cyclical coordinate
descent algorithm and the Newton algorithm.
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RPP: Newton method
Gradient and Newton methods are the most fundamental numerical methods for
optimization (Boyd and Vandenberghe 2004).
The gradient method obtains the iterates based on the gradient ∇f of the objective
function f(x) as

x(k+1) = x(k) − µ∇f(x(k))
but has a slow convergence.
The Newton method also incorporates the Hessian H:

x(k+1) = x(k) − H−1(x(k))∇f(x(k))
obtaining much faster convergence.
In practice, one may use the backtracking method to properly adjust the step size of each
iteration.
For our function f(x) = 1

2xTΣx− bT log(x), the gradient and Hessian are given by
∇f(x) = Σx− b/x
H(x) = Σ + Diag(b/x2).
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Block coordinate descent (BCD)

The BCD method (aka Gauss-Seidel method) minimizes the function f(x1, x2, . . . , xN) with
respect to each block of variables one by one in a sequential manner (Bertsekas 1999)11.

Algorithm 1: BCD
Set k = 0 and initialize x(0)

repeat
Solve sequentially for i = 1, . . . , N:

x(k+1)
i = arg min

xi
f
(
x(k+1)

1 , . . . , x(k+1)
i−1 , xi, x(k)

i+1, . . . , x(k)
N

)
k← k + 1

until convergence
return x(k)

11D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
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Convergence of BCD

Proposition 1:
If f(x) is continuously differentiable and each minimization has a unique solution, then every
limit point of the algorithm is a stationary point (optimal point for a convex problem).
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RPP: Cyclical coordinate descent algorithm
The cyclical coordinate descent algorithm is a particular case of the BCD method where
f(x) is minimized in a cyclical manner with respect to each element of the variable
x = (x1, x2, . . . , xN).
The minimization of f(x) = 1

2xTΣx− bT log(x) with respect to xi is (denote
x−i = (x1, · · · , xi−1, 0, xi+1, · · · , xN))

minimize
xi≥0

1
2x2

i σ2
i + xi(xT

−iΣ:,i)− bi log xi

with gradient ∇if = xiσ2
i + (xT

−iΣ:,i)− bi/xi.
Setting the gradient to zero gives us the second order equation

x2
i σ2

i + xi(xT
−iΣ:,i)− bi = 0

with positive solution given by

x⋆
i =
−(xT

−iΣ:,i) +
√

(xT
−iΣ:,i)2 + 4σ2

i bi

2σ2
i

.
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RPP: General formulation

The previous methods are based on a convex reformulation of the problem so they are
guaranteed to converge to the optimal risk budgeting solution.
However, they can only be employed for the simplest risk budgeting formulation with a
simplex constraint set (i.e., 1Tw = 1 and w ≥ 0).
They cannot be used if

we have other constraints like allowing shortselling or box constraints: li ≤ wi ≤ ui
on top of the risk budgeting constraints wi (Σw)i = bi wTΣw we have other objectives like
maximizing the expected return wTµ or minimizing the overall variance wTΣw.

In those more general cases, we need more sophisticated formulations, which
unfortunately are not convex.
In the R programming language there is a package called riskParityPortfolio that can
solve very efficiently all the formulations.
We will overview the different general formulations and the solution methods.
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RPP formulations

The idea is to try to achieve equal risk contributions RCi = wi(Σw)i√
wTΣw

by penalizing the
differences between the terms wi (Σw)i.
Maillard et al. (2010)12 aimed at solving:

minimize
w

∑N
i,j=1

(
wi (Σw)i − wj (Σw)j

)2

subject to 1Tw = 1.

This is a simplified formulation with a single-index summation (objective only has N
terms instead of N2):

minimize
w,θ

∑N
i=1 (wi (Σw)i − θ)2

subject to 1Tw = 1.

12S. Maillard, T. Roncalli, and J. Teiletche, “The properties of equally weighted risk contribution portfolios,”
Journal of Portfolio Management, vol. 36, no. 4, pp. 60–70, 2010.
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RBP formulations

This formulation is again based on the double-index summation with budgets:

minimize
w

∑N
i,j=1

(
wi(Σw)i

bi
− wj(Σw)j

bj

)2

subject to 1Tw = 1.

This one on a single-index summation:

minimize
w,θ

∑N
i=1

(wi(Σw)i
bi
− θ

)2

subject to 1Tw = 1.
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RBP formulations

Bruder and Roncalli (2012)13 proposed a formulation based on the RRC:

minimize
w

∑N
i=1

(wi(Σw)i
wTΣw − bi

)2

subject to wT1 = 1.

This one is instead based on the RC:

minimize
w

∑N
i=1

( wi(Σw)i√
wTΣw

− bi
√

wTΣw
)2

subject to 1Tw = 1.

This one is also similar:

minimize
w

∑N
i=1

(
wi (Σw)i − biwTΣw

)2

subject to 1Tw = 1.
13B. Bruder and T. Roncalli, “Managing risk exposures using the risk budgeting approach,” University Library

of Munich, Germany, Tech. Rep., 2012.
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RPP: References

Two standard textbooks (Qian 2016; Roncalli 2013):
T. Roncalli, Introduction to Risk Parity and Budgeting. CRC Press, 2013.
E. Qian, Risk Parity Fundamentals. CRC Press, 2016.

A unified general formulation and advanced algorithms can be found in (Feng and
Palomar 2015, 2016):

Y. Feng and D. P. Palomar, “SCRIP: Successive convex optimization methods for
risk parity portfolios design,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5285–
5300, 2015.

Y. Feng and D. P. Palomar. A Signal Processing Perspective on Financial Engi-
neering. Foundations and Trends in Signal Processing, Now Publishers, 2016.

A software implementation of the algorithms is available in the R package
riskParityPortfolio.
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Unified RPP problem formulation

A more general risk parity formulation is (Feng and Palomar 2015)14

minimize
w

∑N
i=1 gi (w)2 + λF (w)

subject to w ∈ W

where∑N
i=1 gi (w)2: risk concentration measurement, e.g.,

gi (w) ≜ wi (Σw)i
wTΣw − 1

N ,

F (w): preference, e.g., 0, −µTw, −µTw + νwTΣw,
λ ≥ 0: trade-off parameter,
w ∈ W: capital budget (1Tw = 1) & other convex constraints.

Challenge: the problem is highly nonconvex due to the term ∑N
i=1 gi (w)2.

14Y. Feng and D. P. Palomar, “SCRIP: Successive convex optimization methods for risk parity portfolios
design,” IEEE Trans. Signal Processing, vol. 63, no. 19, pp. 5285–5300, 2015.
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Risk concentration term
The previous general formulation contains the risk concentration term
R(w) =

∑N
i=1 gi (w)2, which can be written in a compact way to represent the many

formulations presented before.
Define Mi ∈ RN×N as a sparse matrix with its ith row equal to that of the covariance
matrix Σ.
Examples:

R(w) =
∑N

i,j=1

(
wi (Σw)i − wj (Σw)j

)2
corresponds to

gi,j(w) = wT(Mi −Mj)w

R(w) =
∑N

i=1 (wi (Σw)i − θ)2 corresponds to
gi(w) = wTMiw− θ

R(w) =
∑N

i=1

(
wi(Σw)i
wTΣw − bi

)2
corresponds to

gi(w) = wTMiw
wTΣw − bi.
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Risk concentration term
More examples:

R(w) =
∑N

i,j=1

(
wi(Σw)i

bi
− wj(Σw)j

bj

)2
corresponds to

gi,j(w) = wT(Mi/bi −Mj/bj)w

R(w) =
∑N

i=1
(
wi (Σw)i − biwTΣw

)2 corresponds to

gi(w) = wT(Mi − biΣ)w

R(w) =
∑N

i=1

(
wi(Σw)i√

wTΣw
− bi
√

wTΣw
)2

corresponds to

gi(w) = wTMiw√
wTΣw

− bi
√

wTΣw

R(w) =
∑N

i=1

(
wi(Σw)i

bi
− θ

)2
corresponds to

gi(w) = wTMiw/bi − θ.
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Solving the unified nonconvex RPP problem

Recall the unified nonconvex RPP formulation:

minimize
w

∑N
i=1 gi (w)2 + λF (w)

subject to w ∈ W.

We can solve this with some general-purpose multivariate optimization solver:
in R we can use the function optim
in Matlab we can use the function fmincon

However, for our RPP problem, such off-the-shelf nonlinear numerical optimization
methods can be slow and may get stuck at some unsatisfactory points.
This is because the structure of the objective is not exploited.
We can develop some tailored numerical algorithm with much faster convergence speed
and computational efficiency; in particular, we will use the framework of successive
convex approximation (SCA).
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Slow convergence of general-purpose solvers
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Successive Convex Approximation (SCA)
Consider our difficult nonconvex problem:

minimize
w

U(w)
subject to w ∈ W.

Basic idea of SCA: solve a difficult problem via solving a sequence of simpler problems.
Minimize U(w) over w ∈ W via SCA (Scutari et al. 2014)15:

Approximation: find Ũ
(
w; wk)

that approximates the function U (w) at the point wk with
Ũ

(
w; wk): uniformly strongly convex & cont. differentiable

∇Ũ
(
w; wk): Lipschitz continuous on W

∇Ũ
(
w; wk) |w=wk = ∇U (w) |w=wk

Minimization: minimize Ũ
(
w; wk)

to get the update

wk+1 ≜ arg min
w∈W

Ũ
(
w; wk)

.

15G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang, “Decomposition by partial linearization:
Parallel optimization of multi-agent systems,” IEEE Trans. Signal Processing, vol. 62, no. 3, pp. 641–656, 2014.
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Construction of approximation
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Minimization
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One more iteration
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Classical methods as SCA
(Unconstrained) gradient descent: Choose

Ũ
(
w; wk

)
= U

(
wk

)
+∇U

(
wk

)T (
w−wk

)
+ 1

2αk

∥∥∥w−wk
∥∥∥2

2
.

Setting the derivative w.r.t. w to zero yields:

wk+1 = wk − αk∇U
(
wk

)
.

(Unconstrained) Newton’s method: Choose

Ũ
(
w; wk

)
= U

(
wk

)
+∇U

(
wk

)T (
w−wk

)
+ 1

2αk

(
w−wk

)T
∇2U

(
wk

) (
w−wk

)
.

Setting the derivative w.r.t. w to zero yields:

wk+1 = wk − αk
(
∇2U

(
wk

))−1
∇U

(
wk

)
.
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SCA for RPP optimization
Recall the objective

U (w) =
N∑

i=1
gi(w)2 + λF (w) .

At the kth iteration wk, linearize gi(w) to construct

Ũ
(
w, wk

)
=

P(w;wk)≜︷ ︸︸ ︷
N∑

i=1

(
gi

(
wk

)
+∇gi

(
wk

)T (
w−wk

))2

+τ

2
∥∥∥w−wk

∥∥∥2

2
+ λF (w)

Idea: lineare nonconvex functions gi (w) inside the square leads to quadratic convex
P

(
w; wk

)
that approximates R(w) =

∑N
i=1 gi(w)2, with

∇P
(
w, wk

)
|w=wk = ∇R (w) |w=wk .
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SCA for RPP optimization

P
(
w; wk

)
=

∑N
i=1

(
gi

(
wk

)
+∇gi

(
wk

)T (
w−wk

))2
can be rewritten more compactly

as
P

(
w; wk

)
= ∥Ak

(
w−wk

)
+ g

(
wk

)
∥2

where
Ak ≜

[
∇g1

(
wk

)
, . . . ,∇gN

(
wk

)]T
,

g
(
wk

)
≜

[
g1

(
wk

)
, . . . , gN

(
wk

)]T
.

We can further expand P
(
w; wk

)
as

P
(
w; wk

)
=

(
w−wk

)T (
Ak

)T
Ak

(
w−wk

)
+ g

(
wk

)T
g

(
wk

)
+ 2g

(
wk

)T
Ak

(
w−wk

)
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SCA for RPP optimization

The quadratic program (QP) approximation problem at the kth iteration is

minimize
w

Ũ
(
w, wk

)
= 1

2wTQkw + wTqk + λF (w)
subject to w ∈ W

where
Qk ≜ 2

(
Ak

)T
Ak + τ I,

qk ≜ 2
(
Ak

)T
g

(
wk

)
−Qkwk,

This problem can be solved direclty with a QP solver or, depending on the constraints in
W, one may derive simpler closed-form solutions.
For example, if we only have equality constraints in the form Cw = c, then from the KKT
optimality conditions the optimal solution is found as ŵk = −(Qk)−1(qk + CTλk) where
λk = −

(
C(Qk)−1CT

)−1 (
C(Qk)−1qk + c

)
.
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RPP: Sequential numerical algorithm

Algorithm 2: Successive Convex optimization for RIsk Parity portfolio (SCRIP)
Set k = 0, w0 ∈ W, τ > 0, {γk} ∈ (0, 1]
repeat

Solve QP problem to get the optimal solution ŵk (global minimum)
wk+1 = wk + γk

(
ŵk −wk

)
k← k + 1

until convergence
return wk

More advanced algorithms can be found in (Feng and Palomar 2015):
Y. Feng and D. P. Palomar, “SCRIP: Successive convex optimization methods for

risk parity portfolios design,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5285–
5300, 2015.
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Convergence analysis

Proposition 2:
Under some technical conditions, suppose τ > 0, γk ∈ (0, 1], γk → 0, ∑

k γk = +∞ and∑
k

(
γk

)2
< +∞, and let

{
wk

}
be the sequence generated by Algorithm 2. Then, either

Algorithm 1 converges in a finite number of iterations to a stationary point or every limit of{
wk

}
(at least one such point exists) is a stationary point.
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Fast numerical convergence of SCA
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Conclusions

We have reviewed the Markowitz portfolio formulation and understood that it has many
practical flaws that make it impractical. Indeed, it has not been embraced by practitioners.

We have learned about the risk parity portfolio formulation.

We have explored different numerical methods for the risk parity portfolio:
the closed-form solution for the naive diagonal formulation
many algorithms for the vanilla convex formulation
the successive convex approximation (SCA) method for the general nonconvex formulation.

The performance of risk parity portfolio vs. Markowitz portfolio is much improved.

Side result: we have learned how to develop efficient numerical algorithms for nonconvex
problems based on SCA.
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Thanks

For more information visit:

https://www.danielppalomar.com
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