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Overview

@ Problem Setups
@ Partial Linear Regression
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Partial Linear Regression

Consider the following partial linear regression model:

Y = Do + go(X) + U, E[UX,D] =0
D= mo(X)+V, E[VIX] =0

Here, Y is the outcome variable, D is the treatment, X € RP is the control
variable and U, V are noise term.

We are interested in estimating treatment effect parameter 6y and we need
to estimate the nuisance parameter 19 = (mo, go) in the same time.
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Regularization Bias

A naive way to estimate 6 is as follows.
@ split data into two index set, I, [¢

@ Using some sophisticated machine learning algorithm to estimate gy as
go on dataset /¢

@ Using go and dataset / to estimate 6y (plug-in regression)

b = (iZD?) %ZD/'(Y/'—QO(XI'))

i€l i€l
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Regularization Bias

However, this estimator 8y has a slower convergence rate, namely,

-1
ﬁ(éo—lgo):(izf)%) \%ZD,'U:'
icl icl

-1
+ (}7 3 D;) % > Di(go (Xi) — & (X))

i€l icl

where the first part on the RHS converges to N(0,Y¥) but the second term
diverges in high-dimensional cases.

-1
(i 3 Dg) \; > Di(go (X)) — &0 (X))
icl il

— (E[D]) ™ 72 30 mo (%) (60 (%) — &0 (X)) + 0p(1)

i€l
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Regularization Bias

We will introduce two technique, Neyman Orthogonality and Cross-
fitting from [2] to overcome the problem.
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© Neyman Orthogonality
@ Definition
@ The Construction of Neyman Orthogonal Score Function
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For some low dimensional parameter # € © C R% with true value 6y, we
first assume 6 satisfies the moment conditions.

Ep[¢ (w; 00,m0)] =0 (2.1)

where w is some random variables in a measurable space W, Ay equipped
with a probability P. ng is some nuisance parameter and 1 is a score function
(i.e. likelihood function, moment condition).
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Definition

Gateaux Derivative

For T= {n —mo : m € T} we define the the Gateaux derivative
. d
mapD,: T — R,

D, [n—mo] := 0, {Ep [t (w; 00,m0 +r(n—mo)l}, neT

for all re [0,1). We also denote

OmEp [¢ (w; 00,m0)] [n —mo] :=Do[n—mo], neT
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Neyman Orthogonality

Neyman Orthogonality

The score function 1 obeys the orthogonality condition at (6p,79) with
respect to the nuisance realization set Ty C T if Equation (2.1) holds and
the Gateaux derivative map D, [ — no] exists for all r€ [0,1) and n € Ty
vanishes at r = 0; namely,

hEp [ (w; 0o, n0)l [n —m0] =0,  forall n e Ty

| A\

Neyman Near-Orthogonality

The score function v obeys the Ay near-orthogonality condition, ---, and
n € Ty is small at r = 0; namely,

OyEp [t (w; 00,m0)] [N — mo] < Ay,  forall p e Ty

where 0 < Ay = o (N1/2).
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Likelihood with Finite Dimension Nuisance Parameter

Suppose for the maximum likelihood estimation where the true parameter
values 6y and 5y solve the optimization problem,

o83 PP L0 O

With mild condition, we have,

Ep [0l (w; 00, 80)] =0, Ep[0sl(w; b0, 50)] =0

The original choice of score function is

p(w; 0, 8) = 9pt(w; 0, B)
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Likelihood with Finite Dimension Nuisance Parameter

In order to achieve Neyman orthogonality, we set
Y(w; 0,n) = 0pl(w; 0, B) — ndpt(w; 0, B)

where the nuisance parameter is n = (3',vec(u)')’ € T = B x R%% and
and p is the dy x dg orthogonalization parameter matrix.
The true value of p, namely pg, solves the equation Jyg — uJgg = 0 for

(e Jog '\ _ _
J— < Jﬁg Jﬁﬁ > = 8(0’,6’)EP [8(9/75/)£(W, 9”8)] ‘9:90;5:ﬁ0

We can show that this score function is Neyman orthogonal score when Jgg
is invertible.
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Likelihood with Infinite Dimension Nuisance Parameter

Still consider the likelihood function ¢(w; 6, 3). Now, instead of assuming
that B is a (convex) subset of a finite-dimensional space, we assume that
B is some (convex) set of functions, so that § is the functional nuisance
parameter. Let

Bo = argmaxEp[l(w; 0, )]
BeB
Now consider the score function using concentrated-out technique

o0, = L 0o0(0)

The nuisance parameter is 7 : © — B, and its true value 7y is given by
no(6) = By, for all @ € ©. This score function also satisfies the Neyman
orthogonality condition.
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Likelihood with Infinite Dimension Nuisance Parameter

Consider our PLR model,

Y = Do + go(X) + U, E[UX,D] =0
D= mo(X)+V, E[VIX] =0

We use,
1
(w0, 8) = =5 (Y= DO — B(X))*
and the true values are

(6o, o) = arg eerg?ﬁéBEP[ﬁ(W: 9, 5)]
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Likelihood with Infinite Dimension Nuisance Parameter

Therefore, the true 8 can be expressed using 6 as,

Bo(X) =Ep[Y—DO|X], 6O

Using the concentrated-out technique, our Neyman orthogonal score func-
tion is,

¥ (w0, 89) = (D — mo(X)) x (Y — Db — go(X))

Empirically, this gives the estimator fo

157 (01 = () (Y~ Do — &0(x)) =0
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Overview

© Algorithm
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Double Machine Learning Algorithm

@ Take a K-fold random partition (Ik)kK:1 of observation indices [N] =
{1,..., N} such that the size of each fold Iy is n = N/K. Also, for each
ke [Kl={1,...,K}, define £ := {1,..., N}\ Ik

@ For each k € [K], construct an ML estimator 7jo x = 7jo <(W,-),.€,i) of 7o,

where fjg  is a random element in T, and where randomness depends
only on the subset of data indexed by /.

@ For each k € [K], construct the estimator 6  as the solution of the
following equation:

Enk [¢ (W; 0ok, flok)] =0

where 1) is the Neyman orthogonal score, and E,j is the empirical
expectation over the k-th fold of the data.

@ Aggregate the estimators: fp = %( Z,’le 507;(
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Double Machine Learning Algorithm

@ In Step (c), if achievement of exact 0 is not possible, we cab define the

—

estimator 0  of fp as an approximate ey-solution:

|Enk [t (Wi Oo,k Dlok) ][] < 9'2{9 |Enk [ (w; 0, 70,)]]| + €ns
where ey = 0(5NN_1/2) and (5,\,),\,21 is some sequence of positive

constants converging to zero.
@ We can also aggregate Step (c) and (d) such that

1 & o
K;E"ﬂk [1/’ <W2 90,770,k>} =0
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Overview

@ Theoretical Results
@ Linear Score Function
@ Non-linear Score Function
@ Intuition
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Linear Score Function

We first consider the case of linear score function, where

G(wi8,m) = (im0 +¢P(win),  forall we W0 €O,n €T (41)
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Assumptions for Linear Score Function

Assumption (4.1)

For all N> 3 and P € Py, the following conditions hold.
@ The true parameter value 6y obeys Equation (2.1).
@ The score 9 is linear in the sense of (4.1).

@ The map n +— Ep[Yy(w;6,n)] is twice continuously Gateaux-
differentiable on T.

@ The score 1 obeys the Neyman orthogonality or, more generally, the
Neyman Ay near-orthogonality condition at (6o, 79) with respect to the
nuisance realization set Ty C T.

@ The identification condition holds; namely, the singular values of the
matrix Jo := Ep[¢)? (w; 19)] are between ¢y and c;.

v

Assumption 4.1 requires scores to be Neyman orthogonal or near-orthogonal
and imposes mild smoothness requirements and the canonical identification
condition.
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Assumptions for Linear Score Function

Assumption (4.2)

For all N> 3 and P € Py, the following conditions hold.

o Given a random subset / of [N] of size n = N/K, the nuisance parameter
estimator 7o = 7o ((W;),-E,t) belongs to the realization set Ty with
probability at least 1 —Ap where Ty contains 79 and is constrained by
the next conditions.

@ The moment conditions hold:
mw = sup (Ep v (w 0o, mM|DY? < a
n€Tn

myy = sup (Ep[42(w; )] Y9 < ¢
n Tn
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Assumptions for Linear Score Function

Assumption (4.2 continued)

@ The following conditions on the statistical rates ry, ry, and X}, hold:

v == sup [[Ep [{7(w; n)] — Ep [¢? (w; no)]l| < dn
n€Tn

Fy = sup (EP [||¢(W 0o, m) — ¥ (w; 00,770)H2D1/2 <dpn

n€TN

Ayi=sup ||OPEp[¢ (w;00,m0 + r(n —m0))]|| < on/VN
re(0,1),neTn

@ The variance of the score v is non-degenerate: All eigenvalues of the
matrix

p [¢ (w; 60, 1m0) ¢ (w; 6o, 10)']

are bounded from below by ¢p.
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Theoretical Results for Linear Score Function

Theorem (4.3)

Suppose that Assumptions 4.1 and 4.2 hold. In addition, suppose that
Sy > N-1/2 for all N> 1. Then the DML estimators g concentrate in a
1/+/N neighborhood of #y and are approximately linear and centered
Gaussian,

N
\/No'_l (50 — 90) = \/]-Kl Z@(W,) + Op (pN) ~ N(O,Id)
i=1

uniformly over P € Py, where the size of the remainder term obeys
pn = N7Y2 oy 4 Py NY2 Ay + N2 < Gy

Here, ¥(-) := —o 1514 (-, 00,m0) is the influence function, and the
approximate variance is

o2 = JalEP [ (w; 00,7m0) ¢ (w; 6o, m0)’] (‘51)/
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Theoretical Results for Linear Score Function

Theorem (4.4)

Suppose that Assumptions 4.1 and 4.2 hold. In addition, suppose that
oy > N-1A=2/aA1/2] for |l N > 1. Consider the following estimator of the

asymptotic variance matrix of v'N (670 — 90> :

/

52 = 751}—1(2;(:En,k [w (W; 9~0,ﬁo,k> (] (W; fo, ﬁo,k>l] <751)
p

where Jo = % S Bk [102 (Wi k)], 62 satisfies,

62=02+0p(on), on:= N-IA=2/ A2y g < On
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Non-linear Score Function

@ The assumptions are similar in non-linear score function case.
@ The DML estimator y also has a optimal N~1/2 convergence rate.
© The variance matrix estimator 52 —p o2 and we can replace o2 by 2.

@ A confidence interval can be construct using results above.
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Denote Ep [¢ (w; 6p,10)] to be the empirical analogue of Ep [¢) (w; 8o, 10)],
with Equation (2.1),

En [w (W, é07770)j| =0
Assume the nuisance parameter 1) is known, then
0=En [1/1 <W, 907770” ~ En [1 (w; 60, m0)] + En [ (w; 6o, m0)] <9Ao - 90)
= 9B [ (w, 00, 10)] VN (90 - 90) ~ —VNEy [¢) (w, 60, m0)]
= VN (0o~ 00) ¢ N (0.4722s7)
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Now consider the case where we do not know 7)9. Instead, we use 7y to
estimate 759, and we solve:

En [w (W, é07ﬁ0):| =0
Therefore,

0= ]EN |:¢ <W7 é\O) ﬁ0>i| ~ EN [1/} (W7 907 ﬁO)] + 809IEN [w (W7 907 7II\ZO)] (éo - 90)
= 9En [t (w, 0o, 70)] VIV (8o — o) ~ —V/NEw 1 (w; 6o, mo)]
In order to get a asymptotic result, we need Ep [¢) (w, 6p,m0)] to behave

well. If the hypothesis space of i has finite VC dimension, we can use a
stochastic equicontinuity argument to achieve it. See [1].
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Further, we expand the equation above and get,

OpEn [t (w, b0, 70)] VN <éo - 90)
~ —VNEy [¢ (w, 0, 70)]
~ — VNEy [¢ (w, 80, 10) + 3yt (w, 60,70) [flo — 10]]

—VNEy Banzw (w, 00, m0) [0 — ?70]]

© The first term on the RHS behaves well.
@ The second term on the RHS goes to 0, which is guaranteed by Neyman
(near)-orthogonality condition.

@ Cross-fitting and the concentration of ||7jo — 79|l guarantees the third
term on the RHS goes to 0.
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@ When we plug in an estimate of the nuisance parameter 79 to esti-
mate 0p, a small error of 7y might be undesirable. Neyman (near)-

orthogonality condition guarantees that using plug-in estimator won't
hurt.

@ Estimating 1o and 6 using the same data will cause overfitting problem.
Cross-fitting solves this problem.
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Overview

© Applications
@ Partial Linear Regression
@ Inference on Treatment Effect
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Partial Linear Regression

Here we revisit the PLR model.

Y = Do + go(X) + U, E[UX,D] =0
D= mo(X)+V, E[VIX| =0

We here provide score function
(w; 0,n) :={Y— Db — g(X)}(D—m(X)), n=/(gm)
which satisfies Neyman orthogonality condition,

Epyp (w; 0g,m0) =0
OnEpp (w; 00,m0) [ —10] = 0

for mo = (go, mo)-
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Partial Linear Regression

Under mild condition, we can show that this score function is a linear one
and satisfies Assumption 4.1 and 4.2. Therefore,

@ The DML estimator 50 has
U_l\/N (éo - 90) ~ N(O, 1)

where 02 = (Ep [V2]) " Ep [V212] (Ep [V2]) L.
@ The plug-in estimator 62 converges in probability to o2.

© We can construct confidence interval Ay = ®~1(1 — a/2)4/+/N which
has uniform asymptotic validity

Jim_sup )PP (90 € [9"0 o1 a/z)a/ﬁv]) (- a)‘ —0
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Inference on Treatment Effect

Consider the following model,

Y = go(D, X) + U, Ep[U|X, D] =0
D=my(X)+V, Ep[VIX]=0

Here D € {0,1} and we are interested in average treatment effect (ATE),

90 = IEP [gO(lv X) - g0(07 X)]

and average treatment effect on the treated (ATTE),

bo =Ep [gO(]-vX) - g0(07X)|D = 1]

He Li (NYU Stern) Double Machine Learning September 20, 2018 34 /37



Inference on Treatment Effect

We now employ DML method to estimate ATE and ATTE. For the estima-

tion of ATE, we set
P(w; 0,n) :=(g(1, X) — &(0, X)) + W

@-D)(Y-£0.X)
1 — m(X)

with nuisance parameter 7 = (g, m), and for the estimation of ATTE, we
set

D(Y—2&(X)) m(X)(1—D)(Y—g(X) Do
p(1 — m(X)) p

with nuisance parameter n = (g, m, p). The true value is g5(X) = go(0, X),
po = Ep[D].

Y(w; 0,m) =
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Inference on Treatment Effect

Our score functions above satisfy the moment condition and Neyman or-
thogonality condition. Under some mild assumptions, we can verify that our
model satisfies Assumption 4.1 and 4.2.

© The DML estimator y also has a optimal N~1/2 convergence rate to
the true estimator 6y for ATE and ATTE respectively.

@ The variance matrix estimator 6% —, o2 and we can replace o2 by 52.

© A confidence interval can be construct using results above.
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