
Bayesian Notes 14 & 15

He Li
Reading notes on PRML Chapter 11, Sampling Methods

November 13, 2018

1 Basic Sampling Algorithms
1.1 Standard distributions
Generate random numbers from simple nonuniform distributions given the fact that we can
generate z from uniform distribution over the interval (0, 1). Consider a function f(·) so that
y = f(z), Consider the transformation z = F (y) where F (·) : R ⇒ (0, 1) denotes the cdf of y.
Then the cdf of z is:

P{z < x} = P{F (y) < x} = P{y < F−1(x)} = F (F−1(x)) = x (1.1.1)

which is a uniform distribution. Therefore, y = F−1(z).

1.2 Rejection sampling
Sometimes it is hard to sample from a distribution p(x) but we can calculate the value of q(x).
We can find a k as small as possible with limitation that kq(x) ≥ p(x) for all x. Then we can
sample from q(x), and sample u ∼ uniform[0, kq(x)]. We reject the sample if u > p(x).

Note that p(x) does not have to be a valid distribution, but a unnormalized one will also
work.

The mathematical derivative is as follows:

p(accept) =

ˆ
p(x)

kq(x)
q(x)dx =

1

k

ˆ
p(x) dx =

Z

k
(1.2.1)

and

p(x|accept) = p(x)

kq(x)
q(x)

k

Z
=

p(x)

Z
(1.2.2)

where Z =
´
p(x) dx is the normalized constant.

1.3 Adaptive rejection sampling
Sometimes it proves difficult to determine a suitable analytic form for the envelope distribution
q(x). An alternative approach is to construct the envelope function on the fly based on measured
values of the distribution p(x).

Construction of an envelope function is particularly straightforward for cases in which p(z)
is log concave. The function lnp(z)and its gradient are evaluated at some initial set of grid
points, and the intersections of the resulting tangent lines are used to construct the envelope

1

Figure 1: In the case of distributions that are log concave, an envelope function for use in
rejection sampling can be constructed using the tangent lines computed at a set of grid points.
If a sample point is rejected, it is added to the set of grid points and used to refine the envelope
distribution.

function. Next a sample value is drawn from the envelope distribution. See the figure below for
an illustration.

A variant of the algorithm exists that avoids the evaluation of derivatives (Gilks, 1992). The
adaptive rejection sampling framework can also be extended to distributions that are not log
concave, simply by following each rejection sampling step with a Metropolis-Hastings step (to
be discussed in Section 11.2.2), giving rise to adaptive rejection Metropolis sampling.

See an example of log-concave rejection sampling from Wanlu Deng’s Lecture Notes 8,
Bayesian Methods for Statistical Inference.

1.4 Importance sampling
The core idea is expressed below:

E[f] =
ˆ

f(x)p(x)dx

=

ˆ
f(x)

p(x)

q(x)
q(x)dx

≈ 1

M

M∑
i=1

p(xi)

q(xi)
f(xi) (1.4.1)

The quantities p(x)
q(x) are known as importance weights, and they correct the bias introduced

by sampling from the wrong distribution.
It will often be the case that the distribution p(z) can only be evaluated up to a normalization

constant, so that p(x) = p̃(x)
Zp

where p̃(x) can be evaluated easily, whereas Zp is unknown.
Similarly, we may wish to use an importance sampling distribution q(x) = q̃(x)

Zq
, which has the

same property. We then have

E[f] =
ˆ

f(x)p(x)dx

=

ˆ
f(x)

p̃(x)

q̃(x)

Zq

Zp
q(x)dx

≈ 1

M

Zq

Zp

M∑
i=1

rif(xi) (1.4.2)

2

where ri =
p̃(xi)
q̃(xi)

. We can use the same sample set to evaluate the ratio Zp

Zq
with the result

Zp

Zq
=

1

Zq

ˆ
p̃(x)dx =

ˆ
p̃(x)

q̃(x)
q(x)dx ≈ 1

M

M∑
i=1

ri (1.4.3)

Therefore, E[f] ≈
∑M

i=1wif(xi) where

wj =
rj
M

Zq

Zp
=

rj∑M
i=1 ri

=
p̃(xj)/q̃(xj)∑M
i=1 p̃(xi)/q̃(xi)

(1.4.4)

Note that this estimator is consistent but biased.

1.5 Sampling-importance-resampling
The rejection sampling method discussed in Section 11.1.2 depends in part for its success on the
determination of a suitable value for the constant k where sometimes it is impractical. As in
the case of rejection sampling, the sampling-importance-resampling (SIR) approach also makes
use of a sampling distribution q(x) but avoids having to determine the constant k.

There are two stages to the scheme. In the first stage, M samples x1, ..., xM are drawn from
q(x). Then in the second stage, weights w1, ..., wM are constructed using (6). Finally, a second
set of M samples is drawn from the discrete distribution (x1, ..., xM) with probabilities given
by the weights (w1, ..., wM). So our approximation distribution is

P (x ≤ a) =
∑

i:xi≤a

wi =

∑M
i=1 I(x ≤ a)p̃(xi)/q(xi)∑M

i=1 p̃(xi)/q(xi)
(1.5.1)

The resulting L samples are only approximately distributed according to p(z), but the distri-
bution becomes correct in the limit L → ∞. When L → ∞,

P (x ≤ a) =

ˆ
I(x ≤ a){p̃(x)/q(x)}q(x)dx
ˆ
{p̃(x)/q(x)}q(x)dx

=

ˆ
I(x ≤ a)p̃(x)dx
ˆ

p̃(x)dx

=

ˆ
I(x ≤ a)p̃(x)dx (1.5.2)

which is the cdf of p(x). Again, we see that the normalization of p(z) is not required.

1.6 Sampling and the EM algorithm
Sampling methods can be used to approximate the E step of the EM algorithm for models in
which the E step cannot be performed analytically. The Q function can be expressed approxi-
mately with samples drawn from the current estimate for the posterior distribution. A particular
instance of the Monte Carlo EM algorithm, called stochastic EM, arises if we consider a finite
mixture model, and draw just one sample at each E step.

3

2 Markov Chain Monte Carlo
Rejection sampling and importance sampling suffer from severe limitations particularly in spaces
of high dimensionality. However, MCMC allows sampling from a large class of distributions,
and which scales well with the dimensionality of the sample space.

Further insight into the nature of Markov chain Monte Carlo algorithms can be gleaned by
looking at the properties of a specific example, namely a simple random walk. After τ steps,
the random walk has only travelled a distance that on average is proportional to the square
root of τ . This square root dependence is typical of random walk behaviour and shows that
random walks are very inefficient in exploring the state space. As we shall see, a central goal
in designing Markov chain Monte Carlo methods is to avoid random walk behaviour.

2.1 Markov chains
A first-order Markov chain is defined to be a series of random variables z(1), ..., z(M) such that
the following conditional independence property holds for m ∈ 1, ...,M1

p(z(m+1) | z(1), ..., z(m)) = p(z(m+1) | z(m)) (2.1.1)

This of course can be represented as a directed graph in the form of a chain. The transition
probabilities is Tm(z(m), z(m+1)) = p(z(m+1) | z(m)). The marginal probability for a particular
variable can be expressed as:

p(z(m+1)) =
∑
z(m)

p(z(m+1) | z(m))p(z(m)) (2.1.2)

A Markov chain is called homogeneous if the transition probabilities are the same for all m.
A distribution is said to be invariant, or stationary, with respect to a Markov chain if each

step in the chain leaves that distribution invariant. Here we can see that invariant means that
for each state z, the probability to get out is the same as getting in.

p∗(z) =
∑
z′

T (z′, z)p∗(z′) (2.1.3)

A sufficient (but not necessary) condition for ensuring that the required distribution p(z) is
invariant is to choose the transition probabilities to satisfy the property of detailed balance,
defined by

p∗(z)T (z, z′) = p∗(z′)T (z′, z) (2.1.4)

It is easily seen that a transition probability that satisfies detailed balance with respect to a
particular distribution will leave that distribution invariant, because∑

z′

p∗(z′)T (z′, z) =
∑
z′

p∗(z)T (z, z′) = p∗(z)
∑
z′

p(z′ | z) = p∗(z) (2.1.5)

We can achieve this if we set up a Markov chain such that the desired distribution is invariant.
However, we must also require that for m → ∞, the distribution p(z(m)) converges to the
required invariant distribution p∗(z), irrespective of the choice of initial distribution p(z(0)).
This property is called ergodicity, and the invariant distribution is then called the equilibrium
distribution.

In practice we often construct the transition probabilities from a set of ‘base’ transitions
B1, ..., BK . This can be achieved through a mixture distribution of the form

T (z′, z) =

K∑
k=1

αkBk(z
′, z) (2.1.6)

4

2.2 The Metropolis-Hastings algorithm
Inspiration of Markov Chain: if we can find a transformation matrix P , such that our target
sampling distribution p(x) is its invariant distribution. Given the information above, we just
need to satisfy detailed balanced condition.

Given a matrix Q, p(i)Q(i, j) ̸= p(j)Q(j, i). But we can add acceptance rate:

p(i)Q(i, j)α(i, j) = p(j)Q(j, i)α(j, i) (2.2.1)

Noted that only the ratio of α(i, j), α(j, i) matters. We can magnify each side until one of them
reach 1. Therefore,

α(i, j) = min

(
1,

p(j)Q(j, i)

p(i)Q(i, j)

)
(2.2.2)

Now we get the Metropolis-Hastings algorithm.
Metropolis-Hastings algorithm: In particular at step τ of the algorithm, in which the current

state is z(τ), we draw a sample z∗ from the distribution qk(z | z(τ)) and then accept it with
probability Ak(z

∗, zτ) where

Ak(z
∗, zτ) = min

(
1,

p̃(z∗)qk(z
(τ) | z∗)

p̃(zτ)qk(z∗ | z(τ))

)
(2.2.3)

Here k labels the members of the set of possible transitions being considered.
Note that:

(1) Can use P̃ ∝ P (x); normalizer cancels in acceptance ratio

(2) The specific choice of proposal distribution can have a marked effect on the performance of
the algorithm. For continuous state spaces, a common choice is a Gaussian centred on the
current state, leading to an important trade-off in determining the variance parameter of
this distribution. If the variance is small, then the proportion of accepted transitions will
be high, but progress through the state space takes the form of a slow random walk leading
to long correlation times. However, if the variance parameter is large, then the rejection
rate will be high because, in the kind of complex problems we are considering, many of the
proposed steps will be to states for which the probability p(z) is low.

(3) Satisfies detailed balance, so that p(z) is an invariant distribution of Markov Chain.

p(z)qk(z | z′)Ak(z
′, z) = min

(
p(z)qk(z | z′), p(z′)qk(z′ | z)

)
= p(z′)qk(z

′ | z)Ak(z, z
′)

(2.2.4)

2.3 Gibbs Sampling
Gibbs Sampling is usually used on high-dimension distribution. And we will see below that
Gibbs sampling is a natural fit for probabilistic graphic model.

We will use 2-d as an example to verify this algorithm. Consider (x, y), (x, y′). We can just
verify the correctness of Metropolis-Hastings.

p(x, y)p(y′ | x) = p(x)p(y | x)p(y′ | x)
p(x, y′)p(y | x) = p(x)p(y′ | x)p(y | x) (2.3.1)

5

Figure 2: Gibbs Sampling Algorithm

Therefore, we can use this conditional probability as transition matrix. This is a Metropolis-
Hastings with acceptance ratio = 1.

p(x, y)p(y′ | x) = p(x, y′)p(y | x) (2.3.2)

Specically, the lower bound on the number of iterations required to generate an independent
sample is O((L/l)2) where L the marginal variance and l the conditional variance.

As with the Metropolis algorithm, we can gain some insight into the behaviour of Gibbs
sampling by investigating its application to a Gaussian distribution. Consider a correlated
Gaussian in two variables, as illustrated in Figure 3, having conditional distributions of width
l (we can see this as the conditional varinace) and marginal distributions of width L. The
typical step size is governed by the conditional distributions and will be of order l. Because the
state evolves according to a random walk, the number of steps needed to obtain independent
samples from the distribution will be of order (L/l)2. Of course if the Gaussian distribution
were uncorrelated, then the Gibbs sampling procedure would be optimally efficient. For this
simple problem, we could rotate the coordinate system in order to decorrelate the variables.
However, in practical applications it will generally be infeasible to find such transformations.

One approach to reducing random walk behaviour in Gibbs sampling is called over-relaxation.
In its original form, this applies to problems for which the conditional distributions are Gaus-
sian, which represents a more general class of distributions than the multivariate Gaussian. At
each step of the Gibbs sampling algorithm, the conditional distribution for a particular compo-
nent zi has some mean µi and some variance σ2. In the over-relaxation framework, the value
of zi is replaced:

z′i = µi + α(zi − µi) + σi(1− σ2
i)

1/2ϵ (2.3.3)

where ϵ ∼ N (0, 1). For α = 0, the method is equivalent to standard Gibbs sampling, and
for α < 0 the step is biased to the opposite side of the mean. This step leaves the desired
distribution invariant because if zi has mean µi and variance σ2

i , then so too does zi.
Because the basic Gibbs sampling technique considers one variable at a time, there are strong

dependencies between successive samples. This is achieved in the blocking Gibbs sampling
algorithm by choosing blocks of variables, not necessarily disjoint, and then sampling jointly
from the variables in each block in turn, conditioned on the remaining variables.

6

Figure 3: Illustration of Gibbs sampling by alternate updates of two variables whose distribution
is a correlated Gaussian. The step size is governed by the standard deviation of the conditional
distribution (green curve), and is O(l), leading to slow progress in the direction of elongation
of the joint distribution (red ellipse). The number of steps needed to obtain an independent
sample from the distribution is O((L/l)2).

2.4 Slice Sampling
Metropolis: sensitive to step size. If too small, slow decorrelation due to random walk. If too
large, inefficiency due to high rejection rate. We instead use slice sampling, which require to
evaluate the unnormalized distribution p̃(z).

Consider first the univariate case. Slice sampling involves augmenting z with an additional
variable u and then drawing samples from the joint (z, u) space. We shall see another example
of this approach when we discuss hybrid Monte Carlo in Section 11.5. The goal is to sample
uniformly from the area under the distribution

Consider the univariate case, we add an additional variable u and drawing samples from the
joint (z, u) space. The joint distribution is given by

p̂(z, u) =

{
1/Zp if 0 ≤ u ≤ p̃(z)

0 otherwise
(2.4.1)

where Zp =
´
p̃(z)dz. The marginal distribution is

ˆ
p̂(z, u)du =

ˆ p̃(z)

0

1

Zp
du =

p̃(z)

Zp
= p(z) (2.4.2)

Given the value of z we evaluate p(z) and then sample u uniformly in the range 0 ≤ u ≤ p̃(z),
which is straightforward. Then we fix u and sample z uniformly from the ’slice’ through the
distribution defined by {z : p̃(z) > u}.

In practice, it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme that leaves the uniform distribution under p̂(z, u) invariant,
which can be achieved by ensuring that detailed balance is satisfied. Suppose the current value
of z is denoted z(τ) and that we have obtained a corresponding sample u. The next value of
z is obtained by considering a region zmin ≤ z ≤ zmax that contains z(τ). It is in the choice
of this region that the adaptation to the characteristic length scales of the distribution takes
place. We want the region to encompass as much of the slice as possible so as to allow large
moves in z space while having as little as possible of this region lying outside the slice, because
this makes the sampling less efficient. See below a proof for slice sampler.

7

Proof for invariance of slice sampler

The presentation of the theoretical parts of the slice sampler in the lecture contained some
errors. This note gives a more formal (and hopefully correct) presentation.

Assume x ∼ f(x) for x ∈ X .

Defube the extended distribution f(x, u) to be uniform over the set

A = {(x, u) : x ∈ X , 0 ≤ u ≤ f(x)}

Note first that

∫
(x,u)∈A

dudx =

∫
x∈X

∫ f(x)

0

dudx =

∫
x∈X

f(x)dx = 1

showing that f(x, u) = 1 for (x, u) ∈ A, or f(x, u) = I(0 ≤ u ≤ f(x) for x ∈ X .

Further, for x ∈ X ,

∫
u

f(x, u)du =

∫ f(x)

0

du = f(x)

showing that f(x, u) has f(x) as marginal distribution.

The slice sampler is now defined as follows: Iteratively, go through the following steps:

• Sample ui ∼ uniform{u : 0 ≤ u ≤ f(xi−1)}

• Sample xi ∼ uniform{x : ui ≤ f(x)}

Note first that {(xi, ui)} is a Markov chain. By defining A(u) = {x : u ≤ f(x)} and |A(u)|
the size of A(u), we have that K((x, u), (x′, u′)), the kernel for a transition from (x, u) to
(x′, u′) can be written as

K((x, u), (x′, u′)) =K1((x, u), (x, u′))K2((x, u′), (x′, u′))

=
1

f(x)
I[0 ≤ u′ ≤ f(x)]

1

|A(u′)|
I[u′ ≤ f(x′)]

We want to show that

f(x′, u′) =

∫
(x,u)∈A

f(x, u)K((x, u), (x′, u′))dudx (*)

which implies that f(x, u) is the invariant distribution for the Markov chain.

1

Now ∫
(x,u)∈A

f(x, u)K((x, u), (x′, u′))dudx

=

∫
(x,u)∈A

1

f(x)
I[0 ≤ u′ ≤ f(x)]

1

|A(u′)|
I[u′ ≤ f(x′)]dudx

=
1

|A(u′)|
I[0 ≤ u′ ≤ f(x′)]

∫
x∈X

1

f(x)
I[u′ ≤ f(x)]

∫ f(x)

0

dudx

=
1

|A(u′)|
I[0 ≤ u′ ≤ f(x′)]

∫
x∈X

I[u′ ≤ f(x)]dx

=
1

|A(u′)|
|A(u′)| = I[0 ≤ u′ ≤ f(x′)] = f(x′, u′)

showing (*).

One can further show that if f(x) is bounded and the support X of f(x) is bounded, the
slice sampler is aperiodic, irreducible and uniformly ergodic.

2

2.5 The Hybrid Monte Carlo Algorithm
2.5.1 Dynamical systems

The dynamics that we consider corresponds to the evolution of the state variable z = {zi}
under continuous time, which we denote by τ . Classical dynamics is described by Newton’s
second law of motion in which the acceleration of an object is proportional to the applied force,
corresponding to a second-order differential equation over time. We can decompose a second-
order equation into two coupled first-order equations by introducing intermediate momentum
variables r, corresponding to the rate of change of the state variables z, having components

ri =
dzi
dτ (2.5.1)

where the zi can be regarded as position variables in this dynamics perspective. Thus for each
position variable there is a corresponding momentum variable, and the joint space of position
and momentum variables is called phase space. We can rewrite our probability distribution as

p(z) =
1

Zp
exp(−E(z)) (2.5.2)

where E(z) is interpreted as the potential energy of the system when in state z. The system
acceleration is the rate of change of momentum and is given by the applied force, which itself
is the negative gradient of the potential energy

dri
dτ = −∂E(z)

∂zi
(2.5.3)

We then define the kinetic energy by

K(r) =
1

2
∥r∥2 = 1

2

∑
i

r2i (2.5.4)

The total energy of Hamilton system is then the sum of its potential and kinetic energies

H(z, r) = E(z) +K(r) (2.5.5)

We can now express the dynamics of the system in terms of the Hamiltonian equations given
by

dzi
dτ =

∂H

∂ri
dri
dτ = −∂H

∂zi
(2.5.6)

During the evolution of this dynamical system, the value of the Hamiltonian H is constant, as
is easily seen by differentiation

dH
dτ =

∑
i

{
∂H

∂zi

dzi
dτ +

∂H

∂ri

dri
dτ

}
=
∑
i

{
∂H

∂zi

∂H

∂ri
− ∂H

∂ri

∂H

∂zi

}
= 0 (2.5.7)

A second important property of Hamiltonian dynamical systems, known as Liouville’s Theo-
rem, is that they preserve volume in phase space. In other words, if we consider a region within

10

the space of variables (z, r), then as this region evolves under the equations of Hamiltonian
dynamics, its shape may change but its volume will not. This can be seen by noting that the
flow field (rate of change of location in phase space) is given by

V = (
dz
dτ ,

dr
dτ) (2.5.8)

and that the divergence of this field vanishes

divV =
∑
i

{
∂

∂zi

dzi
dτ +

∂

∂ri

dri
dτ

}
=
∑
i

{
− ∂

∂zi

∂H

∂ri
+

∂

∂ri

∂H

∂zi

}
= 0 (2.5.9)

Now consider the joint distribution over phase space whose total energy is the Hamiltonian, i.e.,
the distribution given by

p(z, r) =
1

ZH
exp(−H(z, r)) (2.5.10)

Using the two results of conservation of volume and conservation of H, it follows that the
Hamiltonian dynamics will leave p(z, r) invariant. This can be seen by considering a small
region of phase space over which H is approximately constant. If we follow the evolution of the
Hamiltonian equations for a finite time, then the volume of this region will remain unchanged
as will the value of H in this region, and hence the probability density, which is a function only
of H, will also be unchanged. Although H is invariant, the values of z and r will vary, and
so by integrating the Hamiltonian dynamics over a finite time duration it becomes possible to
make large changes to z in a systematic way that avoids random walk behaviour.

The Markov Chain Steps

(1) Gibbs sample velocity

(2) Simulate Hamiltonian dynamics then flip sign of velocity

(a) Hamiltonian ’proposal’ is deterministic and reversible q(x′, v′;x, v) = q(x, v;x′, v′)

(b) Conservation of energy means P (x, v) = P (x, v)

(c) Metropolis acceptance probability is 1

Evolution under the Hamiltonian dynamics will not, however, sample ergodically from p(z, r)
because the value of H is constant. Note that this is because in the phase space, the hamiltonian
dynamics is actually a deterministic path given energy constant. In order to arrive at an ergodic
sampling scheme, we can introduce additional moves in phase space that change the value of
H while also leaving the distribution p(z, r) invariant. The simplest way to achieve this is to
replace the value of r with one drawn from its distribution conditioned on z. This can be
regarded as a Gibbs sampling step, and hence from Section 11.3 we see that this also leaves the
desired distribution invariant. Noting that z and r are independent in the distribution p(z, r),
we see that the conditional distribution p(r | z) is a Gaussian from which it is straightforward
to sample.

In a practical application of this approach, we have to address the problem of performing a
numerical integration of the Hamiltonian equations. This will necessarily introduce numerical
errors and so we should devise a scheme that minimizes the impact of such errors. One scheme

11

for achieving this is called the leapfrog discretization and involves alternately updating discrete-
time approximations ẑ and r̂ to the position and momentum variables using

r̂i(τ + ϵ/2) = r̂i(τ)−
ϵ

2

∂E

∂zi
(ẑ(τ)) (2.5.11)

ẑi(τ + ϵ) = ẑi(τ) + ϵr̂i(τ + ϵ/2) (2.5.12)

r̂i(τ + ϵ) = r̂i(τ + ϵ/2)− ϵ

2

∂E

∂zi
(ẑ(τ + ϵ)) (2.5.13)

Note that the Hamiltonian dynamics method, unlike the basic Metropolis algorithm, is able
to make use of information about the gradient of the log probability distribution as well as
about the distribution itself. An analogous situation is familiar from the domain of function
optimization. In most cases where gradient information is available, it is highly advantageous
to make use of it. Informally, this follows from the fact that in a space of dimension D, the
additional computational cost of evaluating a gradient compared with evaluating the function
itself will typically be a fixed factor independent of D, whereas the D-dimensional gradient
vector conveys D pieces of information compared with the one piece of information given by
the function itself.

2.5.2 Hybrid Monte Carlo

As we discussed in the previous section, for a nonzero step size �, the discretiza- tion of the
leapfrog algorithm will introduce errors into the integration of the Hamil- tonian dynamical
equations. Hybrid Monte Carlo (Duane et al., 1987; Neal, 1996) combines Hamiltonian dynamics
with the Metropolis algorithm and thereby removes any bias associated with the discretization.

Specifically, the algorithm uses a Markov chain consisting of alternate stochastic updates
of the momentum variable r and Hamiltonian dynamical updates using the leapfrog algorithm.
After each application of the leapfrog algorithm, the resulting candidate state is accepted or
rejected according to the Metropolis criterion based on the value of the Hamiltonian H. Thus
if (z, r) is the initial state and (z∗, r∗) is the state after the leapfrog integration, then this
candidate state is accepted with probability

min (1, exp{H(z, r)−H(z∗, r∗)}) (2.5.14)

If the leapfrog integration were to simulate the Hamiltonian dynamics perfectly, then every
such candidate step would automatically be accepted because the value of H would be un-
changed. Due to numerical errors, the value of H may sometimes decrease, and we would like
the Metropolis criterion to remove any bias due to this effect and ensure that the resulting sam-
ples are indeed drawn from the required distribution. In order for this to be the case, we need
to ensure that the update equations corresponding to the leapfrog integration satisfy detailed
balance.

3 Estimating the Partition Function
Most of the sampling algorithms considered in this chapter require only the functional form
of the probability distribution up to a multiplicative constant. The value of the normalization
constant ZE , also known as the partition function, is not needed in order to draw samples from
p(z). However, knowledge of the value of ZE can be useful for Bayesian model comparison since
it represents the model evidence (i.e., the probability of the observed data given the model),
and so it is of interest to consider how its value might be obtained.

12

One way to estimate a ratio of partition functions is to use importance sampling from a
distribution with energy function.

An alternative approach is therefore to use the samples obtained from a Markov chain to
define the importance-sampling distribution.

Resource
• Bishop book: PRML, Chapter 11 Sampling Methods.

• Markov Chain Monte Carlo – Iain Murray’s introduction at the 2009 Machine Learning
Summer School

13

	Basic Sampling Algorithms
	Standard distributions
	Rejection sampling
	Adaptive rejection sampling
	Importance sampling
	Sampling-importance-resampling
	Sampling and the EM algorithm

	Markov Chain Monte Carlo
	Markov chains
	The Metropolis-Hastings algorithm
	Gibbs Sampling
	Slice Sampling
	The Hybrid Monte Carlo Algorithm
	Dynamical systems
	Hybrid Monte Carlo

	Estimating the Partition Function

