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ANNouNceMents

e Project Proposal Is avalable, due 10/23

e P53 released. Due 10/9 (two weeks from now).



Undirected Graphical Models

e -octors only contain nodes that are 1ully-connected — this s
caled a cligue.

* Since a clique of size m contains all cliques of smaller sizes, we
can reduce ourselves to maximal ciques (cligues that cannot be
extended while being fully connected).

~If X & form a maximal clique, arbitrary functions ¢ (z ) capture al
DOSSIDle dependencies within the cligue.

* S0, by considering

C = set of maximal cliques of GG
Yo(xe) : non—negative potential function (not necessarily normalized)

*\/Ve have p H wc aﬁc ; [ = /d:z: H ?ﬁC(ZBC)

CEC o ceC .
partition function



Narkov Blanket

e A set A C X is a Markov Blanket of X if X ¢ A and if A

1s a minimal set of nodes such that X

orecisely its neighibors In the graph:

(XN (AU X)) | A,

* N undirected graphical moadels, the Markov Blanket of a variable Is

* X | Independent of the rest of nodes conaitioned on ts Neignbors



sing Mode

p(Xl,...,Xn):%eXp —Zw”XX Zuz ) .

1<J

e ndirected graphical mode vv'th graph given by (W d/2d) lattice

— w; ; > 0: ferromagnetic interactions (why?)
~ w; ; < 0: anti-ferromagnetic interactions (why?)

_ u;: external magnetic field

—only nelgnbors In the lattice contribute to the interaction terms,
e -rom statistical mechanics, we can interpret the exponent
Z Wi, XX Z W; X
1<
as an energy guantity (in fact, it is the Hamﬂtomam of the system)



—actor Graphs

o A jactor graph Is a bipartite grapnh wnere
—nodes correspond to both random variables{ X; };<» and potential

factors{ve toee

—edges can only be drawn between variable and factor nodes | i
varable X ; appears in factor ¥ q).

@ B
— 7 L
N G S

Markov network

C D

* —aCtor graphs do not nave the cligue vs maximal cligue ambiguity
wny?),

e Same probabllistic model, different graphical representation



_ecture 4 Opectives

e [ne Hammersley-Clifford Theorem

e -rom Inference to Approximate Inference

* Scllef Propagation



Noralization

o Algoritnm to map a Bayesian Network to a Markov Network

e Given G = (V, F) DAG, we define M (G) an undirected graph
over V, with edge between X; and X ; whenever

- X, = X,or X; — X;in G.
—X,; and X; are parents of the same node.

Q‘ f Moralization A B

—®




Noralization

o Algoritnm to map a Bayesian Network to a Markov Network

e Given G = (V, F) DAG, we define M (G) an undirected graph
over V, with edge between X; and X ; whenever

- X, = X,or X; — X;in G.
—X,; and X; are parents of the same node.

Q‘ f Moralization A B

—®

on M(G)  we canno longer tel that ALB

—V-structures disappear, but we can stil model "explaining away” with e.g,
sparsity priors.




Noralization

* —quivalently, this rule is ootained by Mmapping factorization of joint
distrioution.

Bayesia,n Net e MRF
1
pml,.. Hp Ly | ajPa(z) p(ﬂ?l,...,l‘n)zi ch(aﬁc)



Noralization

* —quivalently, this rule is ootained by Mmapping factorization of joint
distrioution.

Bayesian Net s MRF
1
pml,.. Hp Ly | ajPa(z) p(xl,...,xn)zi ch(aﬁc)

® —aCh Node generates a factor In the resulting factor graph:

Vo, (xe,) == p(Ti | Tpaw)) , Ci = i} U Pa(i) .

e ' Hidden Markov Model

LTS L= L




—Hammersley-Clifford [heorem

o \\e saw earlier that some adistributions cannot e modeled as
Sayesian Networks

e Now we ask: wnhich distrioutions can e written as Markov Helds
UsSiNg an appropriate grapn’
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—Hammersley-Clifford [heorem

o \\/o saw last week that some distrioutions cannot be modeled as

Sayesian Networ
oW We ask: wh

<S.

ch distributions can e written as Markov Helds

UsSiNg an appropriate grapn’
e p(x) is a Gibbs distribution over G if it can be written as

p(x1,...,x

n) = % H(Jec Yo(xe) , C = cliques of G

o \/\e saw earlier that

If p is a Gibbs distribution for G, then I(G) C I(p).
—le 'Y separates X and Z in G, then X 17 | Y.
e Converse true’?

— Not In general



—Hammersley-Clifford [heorem

* However, Twe assume that p is positive, i.e. p(x) > 0 for all x,
* [Nen we have

Theorem [H-C]: An undirected graph G is an I-map
for a positive distribution p(x) iff p is a Gibbs distribution
that factorizes over G.

e [l provides a parametrization tor any distribution that complies with a
series of conditional Independence assumptions (Markov

Sroperty).

e Positivity condition 1s needed!



Global Markov but not Factorizing

e Consider 4 binary random variables A, B, C, D, and the following
distrioution:

1
1 1
1 1
1

A B

C D

eDowe have I(G) C I(p)?



Global Markov but not Factorizing

e Consider 4 binary random variables A, B, C, D, and the following
distrioution:

eDowe have I(G) C I(p)?

ALD | {B,C} BLC |{A,D)
— Obsenve that conditioning on opposite comers aways yields one comer
deterministic, and X 1Y whenever X or Y are deterministic.
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¢ |5 pa Gibbs distribution’



Global Markov but not Factorizing

e Consider 4 binary random variables A, B, C, D, and the following
distrioution:

°|5 pa Gibbs d@mbuUQW
— Assume p(z H Vo (ze)

CEC so all these factors are strictly positive

0< Z- p(Oa 07 07 O) — wAB (07 O)wBD (07 O)wDC(Oa 0)¢CA (07 O)
— Irying all 8 positive events implies all factors are strictly positive



~arameter Estimation

* S0 far, we have descrioed two families of graphical models, with
Oros and cons,

* N practice, given some dataset, how to choose which one’?
VWnich parameters”

*\\e assume data Is sampled from an underying (unknown)
distribution p™ , associated to some network model M™ = (G, 6™)



~arameter Estimation

* S0 far, we have descrioed two families of graphical models, with
Oros and cons,

* N practice, given some dataset, how to choose which one’?
VWnich parameters”

*\\e assume data Is sampled from an underying (unknown)
distribution p™ , associated to some network model M™ = (G, 6™)

e Samples {XH, ..., XE) ~ p*iid.

e |n order to "search’ for M™ we parametrize the search within a
family of grapnical models
—\We can learn both model parameters for a fixed grapnh structure,
— Or both structure and parameters.



lask-drnven INference

e Depending on the task, we mignt want to perform different kinds of
estimation,

1. Density =stimation: we are interested In the joint distrioution, which

can
P, Preo

De subsequently used to perform any Inference guery
ction: we are only Interested In a speciic set of conditional

Aistr

oution, e.g classliication, or output prediction.

3. Structural discovery: We are interested in the graph itself (not so

Muc

N the parameters), e.g. determining dependencies between

genes,

(1) 1s typically harder than (2). (3) IS typically harder than (2) and (1),
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~arameter Estimation

o Lot us focus on (1) first, {X*, ..., XY ~ p* iid.
* SUPPOSE P = pg~ for some G*.

* [\WO Main approachnes for parameter estimation:
— Maximum Likelihood Estimation:

B(9) = logp({X",..., X} [ 0) = 3 logp(X' | 0)
(<L

éMLE — argm@axE(@)

— Under appropriate assumptions, QMLE S
#consistent (as sample size grows, Oy, — 0% (in probability)

+ asymptotically efficient ( no other consistent estimator has lower asymptotic
mean-sguared error),

— However, In general this estimation Is computationally intractable.



~arameter Estimation

o Lot us focus on (1) first, {X*, ..., XY ~ p* iid.
* SUPPOSE P = pg~ for some G*.

* [\WO Main approachnes for parameter estimation:

— Method of Moments:
Consider measurable tunctions g1, ..., gs.

(e°g° gi(X) — %‘133752)
For each 6, we have ps(0) =Ex~p,(9s(X)) s=1...8

For appropriate choice of moments/functions, system is invertible:

0 = F(u)




~arameter Estimation

o Lot us focus on (1) first, {X*, ..., XY ~ p* iid.
* SUPPOSE P = pg~ for some G*.

* [\WO Main approachnes for parameter estimation:

— Method of Moments.
Consider measurable tunctions g1, ..., gs.

(e°g° gi(X) — %15’37:2)
For each 6, we have ps(0) =Ex~p,(9s(X)) s=1...8

For appropriate choice of moments/functions, system is invertible:

0 = F(u)

We estimate u by replacing expectations with empirical averages:

Lo z
I<L A
And we plug-in the estimator for 0: 0y, = F'(j1)




MLE IN Bayesian Networks

o | ot us llustrate VIL estimation on BN, assuming we Know the
Sayesian structure G

p(xla s ooy ;s 9) — Hp(xz ‘ LPa(i); 6’)

e Given iid samples {X1, ..., XL}, its log-ikelihood is

ZZIng Xl | XPa(z)v )

(<L 1<n

=) > logp(X] | Xbyu)its) -

1<n <L

— 30 the estimation is separable across different factors, pbreaking the
curse of dimensionality.

e () How apout Markov Random Felds”



arameter =stmation 1IN MRS

O =+l
O=-1

O—0-0—-0—0
NW(HHHH)
O—0—-0—0—0

S
|

P(Xla e

(Z Wi JX XJ Z U,'X,')
* N aMRF we aso have a factonzaﬂon Nto local potemials. N

p(ll?l,...,ilﬁ'n, HwC .TC,

CGC
e .. DUt the partition function entangles the estimation!

Zlogp (X' 0 Z(Zlogzp X5 0) — logZ(H)) .

[<L <L \Ce&C
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nference in a Graphical Moadel

p(x1,. . xn) = % [loee Yo(ze) , C = cliques of G

o \\/Nat does inference mean’’

* N general, the abillity to compute marginal (or equivalently

conditional) prooabillities:

p(rg) = pr(xl,...,x]v) .

* |NIS IS an Intractable pro

— lechnically, it is "#P-com
=N,

e Approximate inference’

&S Tq

plem for general graphns.

olete” (if a poly-time algornthm existed, then



Seller Propagation

e —Or simplicity (without loss of generality), we consider a pair-wise
\VR- setting.

szg LiyLj H¢z CE'L;yz ~

(z 7)

o/'m/‘c/'o/’

O

o
e
oo e

()

o e e

v=0pserved (Dlack
x=hidden (wnite)

Te e
ol e

C

(

e Coal compute p(x | y)



Seller Propagation

*\le need 10 find a "consensus’ amongst the hiadden variables to
commonly explain coservations.

* Ntuition of B algornthm: consensus Is reached atter repeated
‘conversation” between local varnables, untll they agree.

?,‘é
' . e g
¥ X
.’.' ‘{, ﬁ'lq "’

“It looks like we have a consensus.”

(,.JM



Seller Propagation

*\le need 10 find a "consensus’ amongst the hiadden variables to
commonly explain coservations.

* Ntuition of B algornthm: consensus Is reached atter repeated
‘conversation” between local varnables, untll they agree.

e How tO mathematically specity such "conversation” anc
CONSENsuUs”
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e for pairwise IVIRF

* [Ne margina dlSUIbuUOﬂ Wit & becomes

w\y H wm Ly L g H¢z f@ay

(Z J)
* \\e introduce the messages m;(x;).

mij(x;)

[/

m;;(x;) o how likely node ¢ thinks node j is in state z;.

* Selief at Node 7 aggregates INComing messages and unary
ootential:

bj(z;) = Z%‘(%‘;y) H mij(xj) -

N(j): Neighbors of node j.



S for pair-wise IVIRF

* HOW are messages computed/updated’?

mj(T5) Z &z’(mi;y)wij(xiaxj) H M (T;)

T keEN(1)\J

jO‘ OZ

Dz
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—Xxample: Br With No Cycles

e Consider this pair-wise MR- /!

2

e Sclier at node 1

bi(21) = ——n (1: y)mon (1) |

o Messag@—updat@ ruie for megy (1)

bi(x1) = —¢1 T1;Y Z%z 21, T2) (x5 )Mo (T2)mas(2s) .



—Xxample: Br With No Cycles

e Consider this pair-wise MR- /!

1 2

e Sclier at node 1
1 _ 4
b1($1) — —¢1($1§y)m21(£€1) ;

o Messag@—updat@ ruie for megy (1)
bi(x1) = —¢1 T1;Y Z%z 21, T2) (x5 )Mo (T2)mas(2s) .

'SUDSHTUUDQ M3z, M4z \iclds
bi(z1) = —¢1 T1;Y Z¢2 T3y )P12(x1, $2)Z¢ ($3;y)¢23($2,$3)Z$4($4;y)¢24($2,$4) :

L4



—Xxample: Br With No Cycles

e () \What is
bl(fﬂl) — Zilél(ml;y) ZCEQ(@;?J)%Q(%,@) Z<53($3;y)¢23($2,$3) 2&4(x4;y)¢24(x2,x4) :

X2 X3 T4



—Xxample: Br With No Cycles

e () \What is
bl(iﬂl) — Zilél(%;y) ZQ§2(3323?J)¢12($17$2) Z<53($3;y)¢23($2,$3) Z@(mzx;y)w%(%z,m) :

o |{ IS the marginal probavillity of node 1

b1(z1) = Zil Z p(z|y)

L2,L3,L4



SE 0N SIMPly-connected grapns

* | Nis example llustrates the power of BF: expressing a glooal
computation (marginalization) as a chain of local computations
(messages).

* N this example, BP Is exact. Only one message computation per
Nnode I1s sutficient



SE 0N SIMPly-connected grapns

* | Nis example llustrates the power of BF: expressing a glooal
computation (marginalization) as a chain of local computations
(messages).

* N this example, BP Is exact. Only one message computation per
Nnode I1s sutficient

o \\Vnat happens In presence of loops”

> p(2)

Rikg—=Lj,a5=Lj

o | of pz’j(xia 37]’) ;

denote the pairwise joint distrioution of two nelgnibornng sites.

o \\le can derve a similar message-passing algortnm for the pair-
wise distrbution



SE 0N SIMPly-connected grapns

bij(zi,25) = - —di@i)pj(2;)i; (@i, 25) I mwites) [ mu(zy)
ij

kEN (1)\J LEN (j)\3

v v
<+
4l




SE 0N SIMPly-connected grapns

bij(zi,25) = ——i(2:) 5 (x)ij (i, ;) I mwites) [ mu(zy)
* KEN (i)\j IEN (j)\i
o \\e verify that C/‘ ) O/ c/'
5 _

bi(x;) = Zbij(ﬂ%,%’) . Tor
L j




SE 0N SIMPly-connected grapns

bij(zi,25) = - —di@i)pj(2;)i; (@i, 25) I mwites) [ mu(zy)
ij

kEN (1)\J LEN (j)\3

v A\ 4
> <
4l

'Y

*\Ve verlly that </ ) Zc,/c/.
bi(xi)zzbij(%,xj). N £t

* [NUS o
\Y 1,7 , Z bij(ZEi,fj) — sz(:m) =1.

xi,iljj
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SF 0N general grapns

* | Ne rules of computing messages do not rely on any topology of
the grapn.

o \\/nat happens If we apply It nonetheless’”

* -Or that, we Inifialize messages with prior distriputions my;; ~ pg ,
and update them using

m{ () S| Giwsy)v@nay) T me (@)

keEN(i)\J

e Does T work'

—In theory, no. One can buld counter-examples whnere B doss Not
converge to the correct solution [Peart, '88],

—In practice, often it does work well: Loopy BF. WWhy"/
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SE and Free eEnergy

| ot p(x)be the joint distribution defined by our pairwise MiRF
Consider another joint distribution g(x) defined over the same
domain.

* Assuming positive denstties, we define a dwergen)ce
Dkr(q Z q(T log (z)

— Kullback-Lieplier 1s not a distance (not symmetric and no triangle ineq.)
— but non-negative:

ﬂ q
Dgr(q || p) = Eznqlog ];(9?‘)

— 4:azrvq lOg 2_9 (QZ‘)

q

. P
—logE,q=(2)

a7



SE and Free eEnergy

e [ we write p(z) as a Gibbs distribution with energy E(x)

1
p(r) = Ee_E(x)

the Kullback-Liebler divergence becomes

Dk1.(qllp) = Zq +Zq Vogg(z) +logZ ( >0) .



SE and Free eEnergy

e [ we write p(z) as a Gibbs distribution with energy E(x)

1
p(x) = Ee_E(x)

the Kullback-Liebler divergence becomes

Dk1.(qllp) = Zq +Zq Vogg(z) +logZ ( >0) .

* /cro divergence when

> q(x)B(x +Zq ) log q(z) := U(q) — S(q)

avg energy entropy

reaches free energy value F = —log Z .
G(q) = U(q) — S(q): Gibbs free energy
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NVean-reld Free =nergy

e Consider an approximation g(x) with separable form:

q(r) = qu'(ﬂ%:)

— It 18 called mean-field because it does not explicitly model pairwise
Nteractions.

—What is the Gibbs free energy of this model when E(x)is a pair-wise
MR

E(x) ==Y logtj(xs,a;) — » log¢i(x;) .
] 0

— NMean-field average =nergy:

U(q) = — S: S: qi(7i)q;(wj) log ;i (Ti, m5) — S:Sj%(fl?z) log ¢ (x;) .

(7) Tirxj v T

5(q) = — ZZ%(%‘) log gi (i) -

(4 xX;




NVean Held Free Energy

e \lean-field approximation: Minimize Giolbs Free Energy q(x) .

e \arational Inference (later In course) exploits such mean-field
approximations over speciic parametric families.

* |Ne mean field model corresponds to one-node beliefs
qi(zi) < bi(x;)



NVean Held Free Energy

e \lean-field approximation: Minimize Giolbs Free Energy q(x) .

e \arational Inference (later In course) exploits such mean-field
approximations over speciic parametric families.

* |Ne mean field model corresponds to one-node beliefs
qi(zi) < bi(x;)

o \NNnat apout a two-node beliel modeal”/
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Sethe Free =nergy

o | of Us construct a mean-tield approxmation that contains unary
and palr-wise beliels: by, b;;

Vg, Y bij(wimy) = bi(x;) .

Lj

e Under this approximation, the average energy 1

U=— Z Z bij(xi, z;)log i (xi, x;) S‘S‘b (;) log ¢; (x;) .

1] Ti,T;

* Important observation: since p(x) is a pair-wise MRF, its average
energy has the previous form, and Is exact (reaches global minima
Of free energy).



Sethe Free Energy

* | Ne Entropy of a palrwise VIRE does not have closed-form
expression for general graphs, but for simply connected grapns

we nave
B H(z’j) bij (i, ;)

b($) — H@ bi($i)di_1

d;: degree of node 1
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we nave
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[1; bi(x;)%—1

b(x) =

d;: degree of node 1
e [ follows that
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Sethe Free Energy

* | Ne Entropy of a palrwise VIRE does not have closed-form
expression for general graphs, but for simply connected grapns

we nave
H(z’j) bij (i, ;)

[1; bi(x;)%—1

b(x) =

d;: degree of node 1
e [ follows that

Hpethe = — » ¥ bij(@s,25) log bij (2, x; +Z (d; — 1) Zb ;) log b (z;) -

(i7) i T

e [Nus minimizer of Bethe free energy Grethe = U — HBethe
contains the true Gibbs distribution p(z) (recal

Dir(qllp) =0 qg=p.



Sethe Free =nergy

* Bethe free @n@rgy GBethe = U — HBethe
U = —> > ii(Ti, ) log i (zs, x5) > > i(x;)log @di(x;) .

1) Xi,Tj
Hpethe = —> >1 ii (i, x;)1ogbsi(xs, x5) —I—Z (d; — 1) Zb x;)log b;(x;) .
(ig) Ti Ty
e On simply connected grapns, BP beliefs are global minima of the
cethe free energy




Sethe Free Energy

* Bethe free @n@rgy GBethe = U — HBethe
U = —> > ii(Ti, ) log i (zs, x5) > > i(x;)log @di(x;) .

1) Xi,Tj
Hpethe = —> >1 ii(Ti, x)logbii(xi, x;) —I—Z (d; — 1) Zb x;)log b;(x;) .
(ig) Ti Ty
e On simply connected grapns, BP beliefs are global minima of the
cethe free energy

* On general graphs, the Bethe Free Energy does not satisty
GBethe 2 — lOg A



Sethe Free Energy

* Bethe free @n@rgy GBethe = U — HBethe
U = —> > ii(Ti, ) log i (zs, x5) > > i(x;)log @di(x;) .

1) Xi,Tj
Hpethe = —> >1 ii(Ti, x)logbii(xi, x;) —I—Z (d; — 1) Zb x;)log b;(x;) .
(ig) Ti Ty
e On simply connected grapns, BP beliefs are global minima of the
cethe free energy

e On general grapns, the Bethe Free Energy does not satisty
GBethe > —log Z
e However, they provide a powertul characterization ot BF solutions.
A set of beliefs gives BP a fixed point in any graph G

if and only if they are stationary points of the Bethe
free energy.



Sethe Free =nergy

*\\/e construct a Lagrangian £(b) corresponding to the constraints

YV 1,7,x;, bl wa (xi,x;) = Nij(x;)

Vi,7, Zwa Ti,xi) =1— 7
Z, szl’z :1% Yi



Sethe Free =nergy

*\\/e construct a Lagrangian £(b) corresponding to the constraints

V1,7, 2, b wa (xi,x;) = Nij(x;)

Vi,7, Zwa Ti,xi) =1— 7
Z, szxz :1% Yi

oL®) _, 9L

® oM =0  stationary points of Brc

satisty
log bjj (@i, x;) = logvij (s, x;j) + log ¢i(wi) +log @j(x;) + Aij(xs) + Aji(zs) + 755 — 1

(di — 1)(log bi(z;) + 1) = —(1 — di) log (i) + > Njilwi) +
JEN (1)




Sethe Free Energy and B

log bij (@i, x5) = log vij (x4, x;j) + log ¢i(wi) +log @j(x;) + Aij(xs) + Aji(zs) + 755 — 1

—(1—di)log ilws) + Y Ajalwi) +

JEN ()

o Now, If we suppose messages/eliets that are fixed point of B,
we define ;i (z;) = log H M (2;)



Sethe Free Energy and B

log bij (@i, x5) = log vij (x4, x;j) + log ¢i(wi) +log @j(x;) + Aij(xs) + Aji(zs) + 755 — 1

—(1—di)log ilws) + Y Ajalwi) +

JEN ()

o Now, If we suppose messages/eliets that are fixed point of B,
we define ;i (z;) = log H M (2;)

* [Nese multipliers satisty the optimality KK conditions of Lagrange

multipliers, so
Lagrange multipliers \;;(x;) of Bethe Free energy

!

Messages m;;(x;) of BP algorithm

e NS Is a first NiNt of a major tool: characterize inference as solutions
of optimization problems: variational inference.



N ax-FProduct

*\\e have described an algorthm to estimate marginal (and
conditional) distrioutions.

e How about Inference tasks of the form arg mgxp(x | y) ?
—l.e. Maximume-a-posterion inference.




N ax-FProduct

*\\e have described an algorthm to estimate marginal (and
conditional) distrioutions.

e How about Inference tasks of the form arg mgxp(fl? | y) ?
—l.e. Maximume-a-posterion inference.

o A simple varant Is the max-product algonthm, used to estimate the
state configuration with maximum prooapility.

* \arginalization
n-+1 ¥ n
m (@) — S| diws g (@) T mi (@)
T keEN (i)\J
o \/aximization:

m{ 7 (2))  max | Gi(ws )b (@na) [ me (@)

Lq



—xample: MR- Inference

Marginal inference in HMMs

* “Filtering” problemis to do marginal inference to find:

Pr(afn | y17°°'7yn) X: X» Xa X, Xo X
1 A2 A3 A4 A5 Ag

SEEEE

 How doesone compute this? Yi Yy Y3 Yy Y5 Y

 Applyingrule of conditional probability, we have:

PI'(CIZ'n, Yty - - 7yn)
Pr(y1,...,yn)

Pr(zn | Y1, Yn) =

* Naively, would seemto require k™! summations,  Istherea
more efficient

Pr(zn,y1,-- - ¥n) =y Pr(wi,....xn,y1,...,yn)  algorithm?

L1 geeny Tn—1



Marginal inference in HMMs: i f i ? ?i

* Use dynamic programming

:ZPr(B:b,A:a)
Pr(z,,y1,. .., Yn) = Z Pr(z,_ 17$nay17~°7yn) L
Tin_1 Pr(A=a,B=b=Pr(A=a)Pr(B=0b| A =a)
— Z Pr(xn_l, Y, - - ,yn—1) Pr(xn, Yn ’ Ln—-1,Y1,--- ,yn—1)
Tn—1 Conditional independence in HMMs
= Z Pr(%z—layla ce 7yn—1) Pr<mnvyn ‘ $n_1)
T 1 Pr(A=a,B=0b)=Pr(A=a)Pr(B=0b| A=a)

— Z Pr(xn_1,Y1,- s Yn_1) Pr(xpn | n_1) Pr(yn | Tn,Tn_1)

Tp—1 Conditional independence in HMMs

= Z Pr(z,_1,y1,. - Yn_1) Pr(xy | zn_1) Pr(yn | z5)
 Forn=l,initialize Pr(z1,y1) =Pr(zi)Pr(y; | 21)
* Totalrunningtimeis O(nk?)—linear time! Easyto do filtering



NVarginal Inference In VIR-

X, X, X3 Xy Xs Xe

SEERE

Yi Yo Y3 Yq Y5 Y

* NS IS a simply connected grapn:

* |NUS We can apply the B algonthm:

Pr(ajn 9 y) — bn(mn)

1

bn(xn) — Z_Pr(yn ‘ ajn)mn—l,n(xn) -

Mp—1.0(Tn) = Z @)r(yn_l | xn_lﬂ%r(xn | ajn_ljmn_g,n_l(a’;n_l) .

R |

¢n—1(xn—1a yn—l) wn,n—l(wna «Tn—l)




MAP inference in HMMs: W?"f i i

* MAP inferencein HMMs can be solvedin linear time!
argmax Pr(xy,...Tn | y1,--.,Yn) = argmax Pr(xy,... Tn, Y1, -, Yn)

= argmax log Pr(zy1,... Zpn,y1,--.,Yn)
= argmax log [Pr(:m) Pr(y: | 331)} + Zlog {Pf(xi | zi—1) Pr(yi | 33@)}
1=2
* Formulate as a shortest paths problem
eight for edge (xi.1, ) is -log [Pr(xi | x;—1) Pr(y; | =;)

D Path from's to t gives
the MAP assignment

Weight for edge (x,, t) is O

Called the Viterbi algorithm



NVonte-Carlo Estimation

e S5 IS an Instance of optimization-based Inference.
| cts focus on marginal inference:
pa) =3 Y plons )
JFL T
* | NS opject can pe written as an expectation:

p(zi) =Exmpfin, (X)), fie,(X)=1(X; =1;) .

* [NUS, another route to approximate Inference I1s by replacing this
expectation with 1Id samples:

', .. 2™~ p(X) iid

. M
p(x;) = Vi Z fiz (™) .
m=1



NVonte-Carlo Estimation

e [NuUs, provided we can (efficiently) sample from the model, we can
estimate any guantity that depends smoothly on the denstity

o \\/hat Is the gquality of such estimate’?

* 583"
M
< A 1 A m™m A
ot aMap [D(Ti)] = i Z ymp fiw (27) . = Efi(x) = p(a;)
m=1
¢ \/ariance’

a.s.

—Law of large numbers: p(x;) = p(x;) , (m — o0) .
— CLTUnder mid assumptions, v/m(p(x;) — p(x;)) Rt N(0,1) .



NVonte-Carlo Estimation

e SUt, how do we sample from a graphical model’?

—Ititis a BN, we saw In the first lecture that it lends tself to sampling by
folowing topological order.

— But how about undirected graphical models”



GIbbs samplng

e Sibbs Samplng Is an iterative algorthm that produces samples
from undirected models.

* SUDPOSE the model contains varables x1 ... oy,
* Nitialize starting values (e.g from uniform distrioution)

e Do untll ([convergence):
— Pick an ordering of the variables

—Foreach .
+ Sample p(%' | Xj=x5),5F 1.
* Update I ;

e Secal that we only need to condition on the Markov Blanket,



GIbbs samplng

Gibbs Sampling: An Example

P(A)

95
94

P(E)
F F F F

F

MM

001

A P(J) A l-’( M)
T .90
F .05 :(—;(1)

e Consider the alarm network
e Assume we sample variables in the order B,E,A,J,M

A~ W N -~ O

-]

e Initialize all variables att = 0 to False

© Eric Xing @ CMU, 2005-2012 18



GIbbs samplng

Gibbs Sampling: An Example

P(A)

95
94

P(E)
F F F F F
F

MM

001

A~ W N -~ O

-]

A P(J) A I-’( M)
T .90
F .05 :(—;(])

e Sampling P(B|A,E) att = 1: Using Bayes Rule,
P(B|A,E)>x P(A|B,E)P(B)
e A=false, E=false, so we compute:
P(B=T|A=F,E=F)x(0.06)(0.01) =0.0006
PB=F|A=F,E=F)>x(0.999)(0.999) = 0.9980

© Eric Xing @ CMU, 2005-2012 19



Gibbs Sampling: An Example

P(E)
F F F F F
FooT

Burglary Earthquake

P(A)

95
94

MM

001

A P(J) A I-’( M)
T .90
F .05 :(—;(])

e Sampling P(E|A,B): Using Bayes Rule,
P(E|A,B)x P(A|B,E)P(E)
e (AB)=(F,F), so we compute the following,
P(E=T|A=F,B=F)x(0.71)(0.02) =0.0142
P(E=F|A=F,B=F)x(0.999)(0.998) =0.9970

A~ W N -~ O

-]

© Eric Xing @ CMU, 2005-2012 20



GIbbs samplng

Gibbs Sampling: An Example

P(A)

95
94

P(E)
F F F F F
F T F

MM

001

A P(J) A I-’( M)
T .90
F .05 :(—;(])

e Sampling P(A|B,E,J,M): Using Bayes Rule,
P(A|\B,E,J,M)x P(J|A)P(M | A)P(A|B,E)
e (B,E,JM)=(F,TF,F), sowe compute:
P(A=T|B=F,E=T,J=F,M =F) = (0.1)(0.3)(0.29) = 0.0087
P(A=F|B=F,E=T,J=F,M =F) «(0.95)(0.99)(0.71) =0.6678

A~ W N -~ O

-]

© Eric Xing @ CMU, 2005-2012 21



Gibbs Sampling: An Example

P(A)

95
94

P(E)
F F F F F
F T F T

MM

001

A P(J) A l-’( M)
T .90
F .05 :(—;(1)

e Sampling P(J|A): No need to apply Bayes Rule

A~ W N -~ O

-]

e A=F, sowe compute the following, and sample
P(J=T|A=F)x0.05
P(J=F|A=F)x0.95

© Eric Xing @ CMU, 2005-2012 22



Gibbs Sampling: An Example

P(A)

95
94

P(E)
F F F F F
F T F T F

MM

001

A P(J) A l-’( M)
T .90
F .05 :(—;(1)

e Sampling P(M|A): No need to apply Bayes Rule

A~ W N -~ O

-]

e A=F, sowe compute the following, and sample
PM=T|A=F)x0.01
PM=F|A=F)x0.99

© Eric Xing @ CMU, 2005-2012 23



Gibbs Sampling: An Example

P(A)

95
94

P(E)

o F F F F F

MM

F T F T F
F T T T T

001

1

2

3

A P(J) 4

A | P(M)
T| 90

-]

e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,J,M ...

© Eric Xing @ CMU, 2005-2012 24



Gibbs Sampling: An Example

P(E)

002
t B E A )

- O F F F F F
A 1 F T F T F
Pl oo 2 F T T T T
3 T F T E T
4 T F T E F

A P(J) A l-’( M)
T .90
F .05 :(—;(1)

e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,J,M ...

-]

e And similarly fort = 3, 4, etc.

© Eric Xing @ CMU, 2005-2012 25



Gibbs Sampling and Markov Chains

* [Nis algorthm i1s an instance of a broad family of tools: MOMC

o \\Ne will stuady In Tuture lecture the main properties and uses of
general MCMC methods.



