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Announcements
• Project Proposal is available, due 10/23 

• PS3 released. Due 10/9 (two weeks from now). 



Undirected Graphical Models
• Factors only contain nodes that are fully-connected — this is 

called a clique. 
• Since a clique of size m contains all cliques of smaller sizes, we 

can reduce ourselves to maximal cliques (cliques that cannot be 
extended while being fully connected).  
– If       form a maximal clique, arbitrary functions             capture all 

possible dependencies within the clique.  
• So, by considering  

• We have 

XC  (xC)

C = set of maximal cliques of G
 C(xC) : non-negative potential function (not necessarily normalized)

p(x) =
1

Z

Y

C2C
 C(xC) , Z =

Z
dx

Y

C2C
 C(xC) .

partition function



Markov Blanket
•   

• In undirected graphical models, the Markov Blanket of a variable is 
precisely its neighbors in the graph: 

• X is independent of the rest of nodes conditioned on its neighbors. 

A set A ✓ X is a Markov Blanket of X if X /2 A and if A
is a minimal set of nodes such that X?(X \ (A [X)) | A.

Markov blanket

A set U is a Markov blanket of X if X /2 U and if U is a minimal set
of nodes such that X ? (X � {X}�U) | U

In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

X

In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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A set A ✓ X is a Markov Blanket of X if X /2 A and if A
is a minimal set of nodes such that X?(X \ (A [X)) | A.



Ising Model

• Undirected graphical model with graph given by (1d/2d) lattice.  
–   
–   
–   
– only neighbors in the lattice contribute to the interaction terms.  

• From statistical mechanics, we can interpret the exponent 

   as an energy quantity (in fact, it is the Hamiltonian of the system). 

wi,j > 0: ferromagnetic interactions (why?)
wi,j < 0: anti-ferromagnetic interactions (why?)
ui: external magnetic field

H(X) = �
X

i<j

wi,jXiXj �
X

i

uiXi

p(X1, . . . , Xn) =
1

Z
exp

0

@�
X

i<j

wi,jXiXj �
X

i

uiXi

1

A .



Factor Graphs
• A factor graph is a bipartite graph where  

– nodes correspond to both random variables                and potential 
factors                 . 

– edges can only be drawn between variable and factor nodes ( if   
variable      appears in factor      ). 

• Factor graphs do not have the clique vs maximal clique ambiguity 
(why?).  

• Same probabilistic model, different graphical representation.    

Factor graphs

G does not reveal the structure of the distribution: maximum cliques vs.
subsets of them

A factor graph is a bipartite undirected graph with variable nodes and factor
nodes. Edges are only between the variable nodes and the factor nodes

Each factor node is associated with a single potential, whose scope is the set
of variables that are neighbors in the factor graph

A

C

B

D

A

C

B

D

A

C

B

D

Markov network

Factor graphs

The distribution is same as the MRF – this is just a di↵erent data structure
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{Xi}in
{ C}C2C

Xi  C



Lecture 4 Objectives
• The Hammersley-Clifford Theorem 

• From Inference to Approximate Inference 

• Belief Propagation 



Moralization
• Algorithm to map a Bayesian Network to a Markov Network.  
• Given                   DAG, we define            an undirected graph 

over    , with edge between      and      whenever 
–    
–      

G = (V,E) M(G)
V Xi Xj

Xj ! Xi or Xi ! Xj in G.

Xi and Xj are parents of the same node.

Moralization of Bayesian networks

Procedure for converting a Bayesian network into a Markov network

The moral graph M[G ] of a BN G = (V ,E ) is an undirected graph over V
that contains an undirected edge between Xi and Xj if

1 there is a directed edge between them (in either direction)
2 Xi and Xj are both parents of the same node

A

C

B

D

A

C

B

D

Moralization

(term historically arose from the idea of “marrying the parents” of the node)

The addition of the moralizing edges leads to the loss of some independence
information, e.g., A! C  B , where A ? B is lost
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Moralization
• Algorithm to map a Bayesian Network to a Markov Network.  
• Given                   DAG, we define            an undirected graph 

over    , with edge between      and      whenever 
–    
–       

• In           , we can no longer tell that         .  
– V-structures disappear, but we can still model “explaining away” with e.g. 

sparsity priors. 

G = (V,E) M(G)
V Xi Xj

Xj ! Xi or Xi ! Xj in G.

Xi and Xj are parents of the same node.

Moralization of Bayesian networks

Procedure for converting a Bayesian network into a Markov network

The moral graph M[G ] of a BN G = (V ,E ) is an undirected graph over V
that contains an undirected edge between Xi and Xj if

1 there is a directed edge between them (in either direction)
2 Xi and Xj are both parents of the same node

A

C

B

D

A

C

B

D

Moralization

(term historically arose from the idea of “marrying the parents” of the node)

The addition of the moralizing edges leads to the loss of some independence
information, e.g., A! C  B , where A ? B is lost
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M(G) A?B



Moralization
• Equivalently, this rule is obtained by mapping factorization of joint 

distribution.

p(x1, . . . , xn) =
Y

i

p(xi | xPa(i)) p(x1, . . . , xn) =
1

Z

Y

C2C
 C(xC)

Bayesian Net MRF



Moralization
• Equivalently, this rule is obtained by mapping factorization of joint 

distribution. 

• Each node generates a factor in the resulting factor graph:  

• Ex: Hidden Markov Model:

p(x1, . . . , xn) =
Y

i

p(xi | xPa(i)) p(x1, . . . , xn) =
1

Z

Y

C2C
 C(xC)

Bayesian Net MRF

 Ci(xCi) := p(xi | xPa(i)) , Ci = {i} [ Pa(i) .

Converting BNs to Markov networks

1 Moralize the directed graph to obtain the undirected graphical model:

A

C

B

D

A

C

B

D

Moralization

2 Introduce one potential function for each CPD:

�i (xi , xpa(i)) = p(xi | xpa(i))

So, converting a hidden Markov model to a Markov network is simple:

For variables having > 1 parent, factor graph notation is useful
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Hammersley-Clifford Theorem 
• We saw earlier that some distributions cannot be modeled as 

Bayesian Networks.  
• Now we ask: which distributions can be written as Markov Fields 

using an appropriate graph? 



Hammersley-Clifford Theorem 
• We saw last week that some distributions cannot be modeled as 

Bayesian Networks.  
• Now we ask: which distributions can be written as Markov Fields 

using an appropriate graph?  
•   p(x) is a Gibbs distribution over G if it can be written as

p(x1, . . . , xn) =
1
Z

Q
C2C  C(xC) , C = cliques of G



Hammersley-Clifford Theorem 
• We saw last week that some distributions cannot be modeled as 

Bayesian Networks.  
• Now we ask: which distributions can be written as Markov Fields 

using an appropriate graph?  
•   

• We saw earlier that  

– i.e. if 

p(x) is a Gibbs distribution over G if it can be written as

p(x1, . . . , xn) =
1
Z

Q
C2C  C(xC) , C = cliques of G

If p is a Gibbs distribution for G, then I(G) ✓ I(p).

Y separates X and Z in G, then X?Z | Y .
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Hammersley-Clifford Theorem 
• We saw last week that some distributions cannot be modeled as 

Bayesian Networks.  
• Now we ask: which distributions can be written as Markov Fields 

using an appropriate graph?  
•   

• We saw earlier that  

– i.e. if  
• Converse true? 

– Not in general. 

p(x) is a Gibbs distribution over G if it can be written as

p(x1, . . . , xn) =
1
Z

Q
C2C  C(xC) , C = cliques of G

If p is a Gibbs distribution for G, then I(G) ✓ I(p).

Y separates X and Z in G, then X?Z | Y .



Hammersley-Clifford Theorem 
• However, if we assume that 
• Then we have   

• It provides a parametrization for any distribution that complies with a 
series of conditional independence assumptions (Markov 
Property).  

• Positivity condition is needed!

p is positive, i.e. p(x) > 0 for all x,

Theorem [H-C]: An undirected graph G is an I-map
for a positive distribution p(x) i↵ p is a Gibbs distribution
that factorizes over G.



Global Markov but not Factorizing
• Consider 4 binary random variables A, B, C, D, and the following 

distribution: 

• Do we have 

A B

C D

p(A = 1, B = 1, C = 1, D = 1) =
1

8
, p(A = 1, B = 1, C = 0, D = 1) =

1

8

p(A = 0, B = 1, C = 0, D = 1) =
1

8
, p(A = 0, B = 0, C = 0, D = 1) =

1

8

p(A = 0, B = 0, C = 0, D = 0) =
1

8
, p(A = 0, B = 0, C = 1, D = 0) =

1

8

p(A = 1, B = 0, C = 1, D = 0) =
1

8
, p(A = 1, B = 1, C = 1, D = 0) =

1

8

I(G) ✓ I(p)?



Global Markov but not Factorizing
• Consider 4 binary random variables A, B, C, D, and the following 

distribution: 

• Do we have  

– Observe that conditioning on opposite corners always yields one corner 
deterministic, and  

A B

C D

I(G) ✓ I(p)?

A?D | {B,C} B?C | {A,D}

X?Y whenever X or Y are deterministic.



Global Markov but not Factorizing
• Consider 4 binary random variables A, B, C, D, and the following 

distribution: 

• Is    a Gibbs distribution?

A B

C D

p



Global Markov but not Factorizing
• Consider 4 binary random variables A, B, C, D, and the following 

distribution: 

• Is    a Gibbs distribution? 
– Assume   

– Trying all 8 positive events implies all factors are strictly positive!

A B

C D

p
p(x) =

1

Z

Y

C2C
 C(xC)

0 < Z · p(0, 0, 0, 0) =  AB(0, 0) BD(0, 0) DC(0, 0) CA(0, 0)

so all these factors are strictly positive



Parameter Estimation
• So far, we have described two families of graphical models, with 

pros and cons.  
• In practice, given some dataset, how to choose which one? 

Which parameters?  
• We assume data is sampled from an underlying (unknown) 

distribution      , associated to some network model p⇤ M⇤ = (G⇤, ✓⇤)



Parameter Estimation
• So far, we have described two families of graphical models, with 

pros and cons.  
• In practice, given some dataset, how to choose which one? 

Which parameters?  
• We assume data is sampled from an underlying (unknown) 

distribution      , associated to some network model  

• Samples 
• In order to “search” for       , we parametrize the search within a 

family of graphical models 
– We can learn both model parameters for a fixed graph structure,  
– or both structure and parameters. 

p⇤ M⇤ = (G⇤, ✓⇤)

{X1, . . . ,XL} ⇠ p⇤ iid.

M⇤



Task-driven inference
• Depending on the task, we might want to perform different kinds of 

estimation. 
1. Density Estimation: we are interested in the joint distribution, which 

can be subsequently used to perform any inference query.   
2. Prediction: we are only interested in a specific set of conditional 

distribution, e.g classification, or output prediction.  
3. Structural discovery: We are interested in the graph itself (not so 

much the parameters), e.g. determining dependencies between 
genes.    

• (1) is typically harder than (2). (3) is typically harder than (2) and (1). 



Parameter Estimation
• Let us focus on (1) first. 
• Suppose  
• Two main approaches for parameter estimation:

{X1, . . . ,XL} ⇠ p⇤ iid.
p⇤ = p✓⇤ for some ✓⇤.



Parameter Estimation
• Let us focus on (1) first. 
• Suppose  
• Two main approaches for parameter estimation: 

– Maximum Likelihood Estimation:

{X1, . . . ,XL} ⇠ p⇤ iid.
p⇤ = p✓⇤ for some ✓⇤.

E(✓) = log p({X1, . . . ,XL} | ✓) =
X

lL

log p(Xl | ✓)

✓̂MLE = argmax
✓

E(✓)



Parameter Estimation
• Let us focus on (1) first. 
• Suppose  
• Two main approaches for parameter estimation: 

– Maximum Likelihood Estimation: 

– Under appropriate assumptions,                is  
❖ consistent (as sample size grows,   
❖ asymptotically efficient ( no other consistent estimator has lower asymptotic 

mean-squared error). 
– However, in general this estimation is computationally intractable. 

{X1, . . . ,XL} ⇠ p⇤ iid.
p⇤ = p✓⇤ for some ✓⇤.

E(✓) = log p({X1, . . . ,XL} | ✓) =
X

lL

log p(Xl | ✓)

✓̂MLE = argmax
✓

E(✓)

✓̂MLE

✓̂MLE ! ✓⇤ (in probability)



Parameter Estimation
• Let us focus on (1) first. 
• Suppose  
• Two main approaches for parameter estimation: 

– Method of Moments: 

{X1, . . . ,XL} ⇠ p⇤ iid.
p⇤ = p✓⇤ for some ✓⇤.

Consider measurable functions g1, . . . , gS .
(e.g. gi(x) = xi1xi2)

For each ✓, we have µs(✓) = EX⇠p✓ (gs(X)) s = 1 . . . S
For appropriate choice of moments/functions, system is invertible:

✓ = F (µ)



Parameter Estimation
• Let us focus on (1) first. 
• Suppose  
• Two main approaches for parameter estimation: 

– Method of Moments: 

{X1, . . . ,XL} ⇠ p⇤ iid.
p⇤ = p✓⇤ for some ✓⇤.

Consider measurable functions g1, . . . , gS .
(e.g. gi(x) = xi1xi2)

For each ✓, we have µs(✓) = EX⇠p✓ (gs(X)) s = 1 . . . S
For appropriate choice of moments/functions, system is invertible:

✓ = F (µ)
We estimate µ by replacing expectations with empirical averages:

µ̂s =
1

L

X

lL

gs(X
l)

And we plug-in the estimator for ✓: ✓̂MM = F (µ̂)

s = 1 . . . S



MLE in Bayesian Networks
• Let us illustrate ML estimation on BN, assuming we know the 

Bayesian structure     . 

• Given iid samples                       , its log-likelihood is   

– so the estimation is separable across different factors, breaking the 
curse of dimensionality.  

• Q: How about Markov Random Fields? 

G

p(x1, . . . , xn; ✓) =
nY

i=1

p(xi | xPa(i); ✓)

{X1, . . . , XL}

E(✓) =
X

lL

X

in

log p(X l
i | X l

Pa(i); ✓)

=
X

in

X

lL

log p(X l
i | X l

Pa(i); ✓i) .



Parameter Estimation in MRFs

• In a MRF, we also have a factorization into local potentials… 

• … but the partition function entangles the estimation!

ML estimation in Markov networks

How do we learn the parameters of an Ising model?

=  +1

=  -1

p(x1, · · · , xn) =
1

Z
exp

⇣X

i<j

wi,jxixj �
X

i

uixi
⌘
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p(x1, . . . , xn; ✓) =
1

Z(✓)

Y

C2C
 C(xC ; ✓) .

X

lL

log p(X l; ✓) =
X

lL

 
X

C2C
log (X l

C ; ✓)� logZ(✓)

!
.



Inference in a Graphical Model

• What does inference mean?

p(x1, . . . , xn) =
1
Z

Q
C2C  C(xC) , C = cliques of G



Inference in a Graphical Model

• What does inference mean? 

• In general, the ability to compute marginal (or equivalently 
conditional) probabilities:

p(x1, . . . , xn) =
1
Z

Q
C2C  C(xC) , C = cliques of G

p(xS) =
X

i/2S

X

xi

p(x1, . . . , xN ) .



Inference in a Graphical Model

• What does inference mean? 

• In general, the ability to compute marginal (or equivalently 
conditional) probabilities: 

• This is an intractable problem for general graphs.  
– Technically, it is “#P-complete” (if a poly-time algorithm existed, then 

P=NP).  
• Approximate inference?  

p(x1, . . . , xn) =
1
Z

Q
C2C  C(xC) , C = cliques of G

p(xS) =
X

i/2S

X

xi

p(x1, . . . , xN ) .



Belief Propagation
• For simplicity (without loss of generality), we consider a pair-wise 

MRF setting: 

• Goal: compute 

p(x, y) =
1

Z

Y

(i,j)

 ij(xi, xj)
Y

i

�i(xi, yi) .

y=observed (black) 
x=hidden (white)

p(x | y)



Belief Propagation
• We need to find a “consensus” amongst the hidden variables to 

commonly explain observations.  
• Intuition of BP algorithm: consensus is reached after repeated 

“conversation” between local variables, until they agree. 



Belief Propagation
• We need to find a “consensus” amongst the hidden variables to 

commonly explain observations.  
• Intuition of BP algorithm: consensus is reached after repeated 

“conversation” between local variables, until they agree.  

• How to mathematically specify such “conversation” and 
consensus?



BP for pairwise MRF
• The marginal distribution wrt    becomesx

p(x|y) = 1

Z

Y

(i,j)

 ij(xi, xj)
Y

i

�̃i(xi; y) .



BP for pairwise MRF
• The marginal distribution wrt    becomes  

• We introduce the messages             : mij(xj)

ij

mij(xj)

mij(xj) / how likely node i thinks node j is in state xj .

x

p(x|y) = 1

Z

Y

(i,j)

 ij(xi, xj)
Y

i

�̃i(xi; y) .



BP for pairwise MRF
• The marginal distribution wrt    becomes  

• We introduce the messages             :  

• Belief at node    aggregates incoming messages and unary 
potential:   

mij(xj)

ij

mij(xj)

mij(xj) / how likely node i thinks node j is in state xj .

x

p(x|y) = 1

Z

Y

(i,j)

 ij(xi, xj)
Y

i

�̃i(xi; y) .

j

bj(xj) =
1

Zj
�̃j(xj ; y)

Y

i2N(j)

mij(xj) .

N(j): Neighbors of node j.



BP for pair-wise MRF
• How are messages computed/updated?

mij(xj)  
X

xi

0

@�̃i(xi; y) ij(xi, xj)
Y

k2N(i)\j

mki(xi)

1

A .

i
j



Example: BP with no cycles
• Consider this pair-wise MRF:
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Example: BP with no cycles
• Consider this pair-wise MRF: 

• Belief at node 1: 

• Message-update rule for               :

b1(x1) =
1

Z1
�̃1(x1; y)m21(x1) ,

m21(x1)

b1(x1) =
1

Z1
�̃1(x1; y)

X

x2

 12(x1, x2)�̃2(x2; y)m32(x2)m42(x2) .



Example: BP with no cycles
• Consider this pair-wise MRF: 

• Belief at node 1: 

• Message-update rule for               : 

• Substituting                 yields 

b1(x1) =
1

Z1
�̃1(x1; y)m21(x1) ,

m21(x1)

b1(x1) =
1

Z1
�̃1(x1; y)

X

x2

 12(x1, x2)�̃2(x2; y)m32(x2)m42(x2) .

m32, m42

b1(x1) =
1

Z1
�̃1(x1; y)

X

x2

�̃2(x2; y) 12(x1, x2)
X

x3

�̃3(x3; y) 23(x2, x3)
X

x4

�̃4(x4; y) 24(x2, x4) .



Example: BP with no cycles
• Q: What is 
b1(x1) =

1

Z1
�̃1(x1; y)

X

x2

�̃2(x2; y) 12(x1, x2)
X

x3

�̃3(x3; y) 23(x2, x3)
X

x4

�̃4(x4; y) 24(x2, x4) .



Example: BP with no cycles
• Q: What is  

• It is the marginal probability of node 1: 

b1(x1) =
1

Z1
�̃1(x1; y)

X

x2

�̃2(x2; y) 12(x1, x2)
X

x3

�̃3(x3; y) 23(x2, x3)
X

x4

�̃4(x4; y) 24(x2, x4) .

b1(x1) =
1

Z1

X

x2,x3,x4

p(x|y)



BP on simply-connected graphs
• This example illustrates the power of BP: expressing a global 

computation (marginalization) as a chain of local computations 
(messages).  

• In this example, BP is exact. Only one message computation per 
node is sufficient.



BP on simply-connected graphs
• This example illustrates the power of BP: expressing a global 

computation (marginalization) as a chain of local computations 
(messages).  

• In this example, BP is exact. Only one message computation per 
node is sufficient. 

• What happens in presence of loops? 

• Let                                                      

   denote the pairwise joint distribution of two neighboring sites. 
• We can derive a similar message-passing algorithm for the pair-

wise distribution.

pij(xi, xj) :=
X

z:zi=xi,zj=xj

p(z)



BP on simply-connected graphs
bij(xi, xj) =

1

Zij
�i(xi)�j(xj) ij(xi, xj)

Y

k2N(i)\j

mki(xi)
Y

l2N(j)\i

mlj(xj) .



BP on simply-connected graphs

• We verify that
bi(xi) =

X

xj

bij(xi, xj) .

bij(xi, xj) =
1

Zij
�i(xi)�j(xj) ij(xi, xj)

Y

k2N(i)\j

mki(xi)
Y

l2N(j)\i

mlj(xj) .



BP on simply-connected graphs

• We verify that  

• Thus 

bi(xi) =
X

xj

bij(xi, xj) .

8 i, j ,
X

xi,xj

bij(xi, xj) =
X

xi

bi(xi) = 1 .

bij(xi, xj) =
1

Zij
�i(xi)�j(xj) ij(xi, xj)

Y

k2N(i)\j

mki(xi)
Y

l2N(j)\i

mlj(xj) .



BP on general graphs
• The rules of computing messages do not rely on any topology of 

the graph.  
• What happens if we apply it nonetheless? 



BP on general graphs
• The rules of computing messages do not rely on any topology of 

the graph.  
• What happens if we apply it nonetheless?  

• For that, we initialize messages with prior distributions                , 
and update them using 

• Does it work?

mij ⇠ p0j

m(n+1)
ij (xj)  

X

xi

0

@�̃i(xi; y) ij(xi, xj)
Y

k2N(i)\j

m(n)
ki (xi)

1

A .



BP on general graphs
• The rules of computing messages do not rely on any topology of 

the graph.  
• What happens if we apply it nonetheless?  

• For that, we initialize messages with prior distributions                , 
and update them using 

• Does it work? 
– In theory, no. One can build counter-examples where BP does not 

converge to the correct solution [Pearl, ’88]. 
– In practice, often it does work well: Loopy BP. Why?

mij ⇠ p0j

m(n+1)
ij (xj)  

X

xi

0

@�̃i(xi; y) ij(xi, xj)
Y

k2N(i)\j

m(n)
ki (xi)

1

A .



BP and Free Energy
• Let        be the joint distribution defined by our pairwise MRF. 

Consider another joint distribution        defined over the same 
domain. 

p(x)
q(x)



BP and Free Energy
• Let        be the joint distribution defined by our pairwise MRF. 

Consider another joint distribution        defined over the same 
domain.   

• Assuming positive densities, we define a divergence    

– Kullback-Lieblier is not a distance (not symmetric and no triangle ineq.). 
– but non-negative: 

p(x)
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X

x
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q(x)
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BP and Free Energy
• Let        be the joint distribution defined by our pairwise MRF. 

Consider another joint distribution        defined over the same 
domain.   

• Assuming positive densities, we define a divergence    

– Kullback-Lieblier is not a distance (not symmetric and no triangle ineq.). 
– but non-negative: 

p(x)
q(x)

DKL(q || p) =
X

x

q(x) log
q(x)

p(x)

DKL(q || p) = Ex⇠q log
q

p
(x)

= �Ex⇠q log
p

q
(x)

� � logEx⇠q
p

q
(x)

= 0 .



BP and Free Energy
• If we write        as a Gibbs distribution with energy            

  the Kullback-Liebler divergence becomes 

p(x) =
1

Z
e�E(x)

p(x) E(x)

DKL(q||p) =
X

x

q(x)E(x) +
X

x

q(x) log q(x) + logZ ( � 0 ) .



BP and Free Energy
• If we write        as a Gibbs distribution with energy            

  the Kullback-Liebler divergence becomes  

• Zero divergence when  

    
    
   reaches free energy value 

p(x) =
1

Z
e�E(x)

p(x) E(x)

DKL(q||p) =
X

x

q(x)E(x) +
X

x

q(x) log q(x) + logZ ( � 0 ) .

X

x

q(x)E(x) +
X

x

q(x) log q(x) := U(q)� S(q)

F = � logZ .

avg.energy entropy

G(q) = U(q)� S(q): Gibbs free energy



Mean-Field Free Energy
• Consider an approximation        with separable form:   

– It is called mean-field. it does not explicitly model pairwise interactions.

q(x)

q(x) =
Y

i

qi(xi)



Mean-Field Free Energy
• Consider an approximation        with separable form:   

– It is called mean-field because it does not explicitly model pairwise 
interactions. 

– What is the Gibbs free energy of this model when          is a pair-wise 
MRF?  

q(x)

q(x) =
Y

i

qi(xi)

E(x)

E(x) = �
X

i,j

log ij(xi, xj)�
X

i

log �i(xi) .



Mean-Field Free Energy
• Consider an approximation        with separable form:   

– It is called mean-field because it does not explicitly model pairwise 
interactions. 

– What is the Gibbs free energy of this model when          is a pair-wise 
MRF?   

– Mean-field average Energy:

q(x)

q(x) =
Y

i

qi(xi)

E(x)

E(x) = �
X

i,j

log ij(xi, xj)�
X

i

log �i(xi) .

U(q) = �
X

(ij)

X

xi,xj

qi(xi)qj(xj) log ij(xi, xj)�
X

i

X

xi

qi(xi) log �i(xi) .

S(q) = �
X

i

X

xi

qi(xi) log qi(xi) .



Mean Field Free Energy
• Mean-field approximation: Minimize Gibbs Free Energy        .  
• Variational Inference (later in course) exploits such mean-field 

approximations over specific parametric families.   
• The mean field model corresponds to one-node beliefs 

q(x)

qi(xi) $ bi(xi)



Mean Field Free Energy
• Mean-field approximation: Minimize Gibbs Free Energy        .  
• Variational Inference (later in course) exploits such mean-field 

approximations over specific parametric families.   
• The mean field model corresponds to one-node beliefs  

• What about a two-node belief model? 

q(x)

qi(xi) $ bi(xi)



Bethe Free Energy
• Let us construct a mean-field approximation that contains unary 

and pair-wise beliefs: bi, bij
8 i, j ,

X

xi

bi(xi) =
X

xi,xj

bij(xi, xj) = 1 .

8 i, j ,
X

xj

bij(xi, xj) = bi(xi) .



Bethe Free Energy
• Let us construct a mean-field approximation that contains unary 

and pair-wise beliefs:  

• Under this approximation, the average energy is 

• Important observation: since          is a pair-wise MRF, its average 
energy has the previous form, and is exact (reaches global minima 
of free energy).  

bi, bij

8 i, j ,
X

xi

bi(xi) =
X

xi,xj

bij(xi, xj) = 1 .

8 i, j ,
X

xj

bij(xi, xj) = bi(xi) .

U = �
X

ij

X

xi,xj

bij(xi, xj) log ij(xi, xj)�
X

i

X

xi

bi(xi) log �i(xi) .

p(x)



Bethe Free Energy
• The Entropy of a pairwise MRF does not have closed-form 

expression for general graphs, but for simply connected graphs 
we have

b(x) =

Q
(ij) bij(xi, xj)Q
i bi(xi)di�1

.

di: degree of node i



Bethe Free Energy
• The Entropy of a pairwise MRF does not have closed-form 

expression for general graphs, but for simply connected graphs 
we have 

• It follows that 

b(x) =

Q
(ij) bij(xi, xj)Q
i bi(xi)di�1

.

di: degree of node i

HBethe = �
X

(ij)

X

xi,xj

bij(xi, xj) log bij(xi, xj) +
X

i

(di � 1)
X

xi

bi(xi) log bi(xi) .



Bethe Free Energy
• The Entropy of a pairwise MRF does not have closed-form 

expression for general graphs, but for simply connected graphs 
we have 

• It follows that  

• Thus minimizer of Bethe free energy                                   
contains the true Gibbs distribution          (recall  

b(x) =

Q
(ij) bij(xi, xj)Q
i bi(xi)di�1

.

di: degree of node i

HBethe = �
X

(ij)

X

xi,xj

bij(xi, xj) log bij(xi, xj) +
X

i

(di � 1)
X

xi

bi(xi) log bi(xi) .

GBethe = U �HBethe
p(x)

DKL(q||p) = 0 , q = p .



Bethe Free Energy
• Bethe free energy: 

• On simply connected graphs, BP beliefs are global minima of the 
Bethe free energy.

GBethe = U �HBethe

U = �
X

ij

X

xi,xj

bij(xi, xj) log ij(xi, xj)�
X

i

X

xi

bi(xi) log �i(xi) .

HBethe = �
X

(ij)

X

xi,xj

bij(xi, xj) log bij(xi, xj) +
X

i

(di � 1)
X

xi

bi(xi) log bi(xi) .



Bethe Free Energy
• Bethe free energy: 

• On simply connected graphs, BP beliefs are global minima of the 
Bethe free energy. 

• On general graphs, the Bethe Free Energy does not satisfy 

GBethe = U �HBethe

U = �
X

ij

X

xi,xj

bij(xi, xj) log ij(xi, xj)�
X

i

X

xi

bi(xi) log �i(xi) .

HBethe = �
X

(ij)

X

xi,xj

bij(xi, xj) log bij(xi, xj) +
X

i

(di � 1)
X

xi

bi(xi) log bi(xi) .

GBethe � � logZ



Bethe Free Energy
• Bethe free energy: 

• On simply connected graphs, BP beliefs are global minima of the 
Bethe free energy. 

• On general graphs, the Bethe Free Energy does not satisfy  

• However, they provide a powerful characterization of BP solutions:

GBethe = U �HBethe

U = �
X

ij

X

xi,xj

bij(xi, xj) log ij(xi, xj)�
X

i

X

xi

bi(xi) log �i(xi) .

HBethe = �
X

(ij)

X

xi,xj

bij(xi, xj) log bij(xi, xj) +
X

i

(di � 1)
X

xi

bi(xi) log bi(xi) .

GBethe � � logZ

A set of beliefs gives BP a fixed point in any graph G
if and only if they are stationary points of the Bethe
free energy.



Bethe Free Energy
• We construct a Lagrangian        corresponding to the constraints

8 i, j ,
X

xi

X

xj

bij(xi, xj) = 1 ! �ij

8 i,
X

xi

bi(xi) = 1 ! �i

L(b)

8 i, j, xi , bi(xi) =
X

xj

bij(xi, xj) ! �ij(xi)



Bethe Free Energy
• We construct a Lagrangian        corresponding to the constraints 

• From                                               , stationary points of BFE 
satisfy

8 i, j ,
X

xi

X

xj

bij(xi, xj) = 1 ! �ij

8 i,
X

xi

bi(xi) = 1 ! �i

L(b)

@L(b)
@bij(xi, xj)

= 0
@L(b)
@bi(xi)

= 0

8 i, j, xi , bi(xi) =
X

xj

bij(xi, xj) ! �ij(xi)

log bij(xi, xj) = log ij(xi, xj) + log �i(xi) + log �j(xj) + �ij(xj) + �ji(xi) + �ij � 1

(di � 1)(log bi(xi) + 1) = �(1� di) log �i(xi) +
X

j2N(i)

�ji(xi) + �i



Bethe Free Energy and BP

• Now, if we suppose messages/beliefs that are fixed point of BP, 
we define 

log bij(xi, xj) = log ij(xi, xj) + log �i(xi) + log �j(xj) + �ij(xj) + �ji(xi) + �ij � 1

(di � 1)(log bi(xi) + 1) = �(1� di) log �i(xi) +
X

j2N(i)

�ji(xi) + �i

�ij(xj) = log
Y

k2N(j)\i

mkj(xj)



Bethe Free Energy and BP

• Now, if we suppose messages/beliefs that are fixed point of BP, 
we define  

• These multipliers satisfy the optimality KKT conditions of Lagrange 
multipliers, so  

• This is a first hint of a major tool: characterize inference as solutions 
of optimization problems: variational inference. 

log bij(xi, xj) = log ij(xi, xj) + log �i(xi) + log �j(xj) + �ij(xj) + �ji(xi) + �ij � 1

(di � 1)(log bi(xi) + 1) = �(1� di) log �i(xi) +
X

j2N(i)

�ji(xi) + �i

�ij(xj) = log
Y

k2N(j)\i

mkj(xj)

Lagrange multipliers �ij(xj) of Bethe Free energy

Messages mij(xj) of BP algorithm



Max-Product
• We have described an algorithm to estimate marginal (and 

conditional) distributions.  
• How about inference tasks of the form                           ? 

– I.e. Maximum-a-posteriori inference.
argmax

x
p(x | y)



Max-Product
• We have described an algorithm to estimate marginal (and 

conditional) distributions.  
• How about inference tasks of the form                           ? 

– I.e. Maximum-a-posteriori inference.  

• A simple variant is the max-product algorithm, used to estimate the 
state configuration with maximum probability.  

• Marginalization:  

• Maximization:

argmax
x

p(x | y)

m(n+1)
ij (xj)  

X

xi

0

@�̃i(xi; y) ij(xi, xj)
Y

k2N(i)\j

m(n)
ki (xi)

1

A .

m(n+1)
ij (xj)  max

xi

0

@�̃i(xi; y) ij(xi, xj)
Y

k2N(i)\j

m(n)
ki (xi)

1

A .



Example: MRF Inference
Marginal	inference	in	HMMs

• “Filtering”	problem	is	to	do	marginal	inference	to	find:

• How	does	one	compute this?

• Applying	rule	of	conditional	probability,	we	have:	

• Naively,	would	seem	to	require	kn-1 summations,

Pr(xn | y1, . . . , yn)

Pr(xn | y1, . . . , yn) =
Pr(xn, y1, . . . , yn)

Pr(y1, . . . , yn)
=

Pr(xn, y1, . . . , yn)Pk
x̂n=1 Pr(x̂n, y1, . . . , yn)

Pr(xn, y1, . . . , yn) =
X

x1,...,xn�1

Pr(x1, . . . , xn, y1, . . . , yn)

Is	there	a
more	efficient
algorithm?

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6



MRF 

• Use	dynamic	programming

• For	n=1,	initialize	
• Total	running	time	is	O(nk2)	– linear	time!

Pr(xn, y1, . . . , yn) =
X

xn�1

Pr(xn�1, xn, y1, . . . , yn)

=
X

xn�1

Pr(xn�1, y1, . . . , yn�1) Pr(xn, yn | xn�1, y1, . . . , yn�1)

=
X

xn�1

Pr(xn�1, y1, . . . , yn�1) Pr(xn, yn | xn�1)

=
X

xn�1

Pr(xn�1, y1, . . . , yn�1) Pr(xn | xn�1) Pr(yn | xn, xn�1)

=
X

xn�1

Pr(xn�1, y1, . . . , yn�1) Pr(xn | xn�1) Pr(yn | xn)

Pr(x1, y1) = Pr(x1) Pr(y1 | x1)

Easy	to	do	filtering

Pr(A = a) =
X

b

Pr(B = b, A = a)

Pr( �A = �a, �B = �b) = Pr( �A = �a) Pr( �B = �b | �A = �a)

Conditional	 independence	 in	HMMs

Pr(A = a,B = b) = Pr(A = a) Pr(B = b | A = a)

Conditional	 independence	 in	HMMs

Marginal	inference	in	HMMs:
X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6



Marginal Inference in MRF
• This is a simply connected graph: 

• Thus we can apply the BP algorithm:

Marginal	inference	in	HMMs

• “Filtering”	problem	is	to	do	marginal	inference	to	find:

• How	does	one	compute this?

• Applying	rule	of	conditional	probability,	we	have:	

• Naively,	would	seem	to	require	kn-1 summations,

Pr(xn | y1, . . . , yn)

Pr(xn | y1, . . . , yn) =
Pr(xn, y1, . . . , yn)

Pr(y1, . . . , yn)
=

Pr(xn, y1, . . . , yn)Pk
x̂n=1 Pr(x̂n, y1, . . . , yn)

Pr(xn, y1, . . . , yn) =
X

x1,...,xn�1

Pr(x1, . . . , xn, y1, . . . , yn)

Is	there	a
more	efficient
algorithm?

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Pr(xn , y) = bn(xn)

bn(xn) =
1

Zn
Pr(yn | xn)mn�1,n(xn) .

mn�1,n(xn) =
X

xn�1

Pr(yn�1 | xn�1)Pr(xn | xn�1)mn�2,n�1(xn�1) .

�n�1(xn�1, yn�1)  n,n�1(xn, xn�1)



MRF

MAP	inference	in	HMMs:

• MAP	inference	in	HMMs	can	be	solved	in	linear	time!

• Formulate	as	a	shortest	paths	problem

argmax
x

Pr(x1, . . . xn | y1, . . . , yn) = argmax
x

Pr(x1, . . . xn, y1, . . . , yn)

= argmax
x

log Pr(x1, . . . xn, y1, . . . , yn)

= argmax
x

log
h
Pr(x1) Pr(y1 | x1)

i
+

nX

i=2

log
h
Pr(xi | xi�1) Pr(yi | xi)

i

s t

X1 X2 Xn-1 Xn

…

k nodes	per	variable

Weight	for	edge	(xn,	t)	is	0

Called	 the	Viterbi algorithm

Path	from	s to	t gives
the	MAP	assignment

Weight	for	edge	(s,	x1)	is
log

h
Pr(x1) Pr(y1 | x1)

i
-

log
h
Pr(xi | xi�1) Pr(yi | xi)

i
Weight	for	edge	(xi-1,	xi)	is -

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6



Monte-Carlo Estimation
• BP is an instance of optimization-based inference.  
• Let’s focus on marginal inference:  

• This object can be written as an expectation: 

• Thus, another route to approximate inference is by replacing this 
expectation with iid samples:

p(xi) =
X

j 6=i

X

xj

p(x1, . . . , xn) .

p(xi) = EX⇠pfi,xi(X) , fi,xi(X) = 1(Xi = xi) .

x1, . . . , xM ⇠ p(X) iid

p̂(xi) =
1

M

MX

m=1

fi,xi(x
m) .



Monte-Carlo Estimation
• Thus, provided we can (efficiently) sample from the model, we can 

estimate any quantity that depends smoothly on the density.  
• What is the quality of such estimate? 

• Bias? 

• Variance? 
– Law of large numbers:   
– CLT:Under mild assumptions, 

Ex1...xM⇠p [p̂(xi)] =
1

M

MX

m=1

Exm⇠pfi,xi(x
m) . = Efi(x) = p(xi)

p̂(xi)
a.s.! p(xi) , (m ! 1) .p
m(p̂(xi)� p(xi))

d! N (0, 1) .



Monte-Carlo Estimation
• But, how do we sample from a graphical model? 

– If it is a BN, we saw in the first lecture that it lends itself to sampling by 
following topological order.  

– But how about undirected graphical models?



Gibbs Sampling
• Gibbs Sampling is an iterative algorithm that produces samples 

from undirected models. 

• Suppose the model contains variables  
• Initialize starting values (e.g from uniform distribution) 
• Do until (convergence): 

– Pick an ordering of the variables 
– For each      ,  

❖ Sample 
❖ update    

• Recall that we only need to condition on the Markov Blanket.

x1 . . . xn

xi

p(xi | Xj = xj) , j 6= i .
xi



Gibbs Sampling

Gibbs Sampling: An Example 

!  Consider the alarm network 
!  Assume we sample variables in the order B,E,A,J,M 
!  Initialize all variables at t = 0 to False 

© Eric Xing @ CMU, 2005-2012 18 

t B E A J M 

0 F F F F F 

1 

2 

3 

4 



Gibbs Sampling

Gibbs Sampling: An Example 

!  Sampling P(B|A,E) at t = 1: Using Bayes Rule, 

!  A=false, E=false, so we compute: 
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t B E A J M 

0 F F F F F 

1 

2 

3 

4 

F 



Gibbs Sampling: An Example 

!  Sampling P(E|A,B): Using Bayes Rule, 

!  (A,B) = (F,F), so we compute the following,  

© Eric Xing @ CMU, 2005-2012 20 

t B E A J M 

0 F F F F F 

1 F 

2 

3 

4 

T 



Gibbs Sampling

Gibbs Sampling: An Example 

!  Sampling P(A|B,E,J,M): Using Bayes Rule, 

!  (B,E,J,M) = (F,T,F,F), so we compute: 
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t B E A J M 

0 F F F F F 

1 F T 

2 

3 

4 

F 



Gibbs Sampling: An Example 

!  Sampling P(J|A): No need to apply Bayes Rule 

!  A = F, so we compute the following, and sample 
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t B E A J M 

0 F F F F F 

1 F T F 

2 

3 

4 

T 



Gibbs Sampling: An Example 

!  Sampling P(M|A): No need to apply Bayes Rule 

!  A = F, so we compute the following, and sample 
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t B E A J M 

0 F F F F F 

1 F T F T 

2 

3 

4 

F 



Gibbs Sampling: An Example 

!  Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M … 
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t B E A J M 

0 F F F F F 

1 F T F T F 

2 

3 

4 

F T T T T 



Gibbs Sampling: An Example 

!  Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M … 

!  And similarly for t = 3, 4, etc. 
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t B E A J M 

0 F F F F F 

1 F T F T F 

2 F T T T T 

3 T F T F T 

4 T F T F F 



Gibbs Sampling and Markov Chains
• This algorithm is an instance of a broad family of tools: MCMC 
• We will study in future lecture the main properties and uses of 

general MCMC methods. 


