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Overview of Factor Analysis

» Early developmentin psychometrics by Karl Pearson, Charles Spearman, etc
» To describe the covariance structure among many variables with a few unobservable or
latent variables called factors
e Reduction:reduce high dimension data to a few variables
* Interpretation: explain the covariance of observed variables with latent factors

(pxp)




Orthogonal Factor Model (I)

* The observable random vector X, with p components, with mean u
and covariance X

e Xis linearly dependentupon a few common factors and specific

factors, with
loading

Xl_x“1=£}:1+112F2+”'+11mFm+51 or X-p= L F + ¢

(px1) (pxm) (mx1)  (px1)

X,—u, =L F+1,F,+--+[, F +&,

2m= m

X, —u, =L F+l.F+--+[ F +¢,

p



Orthogonal Factor Model (I1)

* Assumptions continued X-p= L F + €

(px1)

E(F)=0, Cov(F)=E(FF)= 1

(mxm)

E(€)=0, Cov(e)=E(ee’)= ¥

(pxp)

Cov(e,F)=E(F')= 0

(pxm)

Y —

(pxm) (mx1)  (px1)

v, 0
0 v,
0O O




Covariance Structure Implied

(X-n)(X-n)=(LF+¢&)((LF +¢g) A : »—\
op {lil + li2 Tt lim}wi
= (LF)(F'L') +&(F'L') + (LF)g'+&¢'

2
¥ = Cov(X) = E(X = p)(X = )’ =h +y,
= LE(FF')L'+E(¢F")L'+LE(F¢') + E(gg') ‘ Communality + Specific variance
- LL'+¥ Oy = COV(Xian) = li'lk

_WF'= | =/l +-+1l [
(X H)F = (LF+8)F ‘ COV(XZ,FJ) _ ll] \ i1°k1 + + im” km /
Cov(X,F) = E(X-p)F'= L




Discussions ()
4 . . . A
» How many parameters are there in a covariance matrix?
» How many parameters are there in the orthogonal factor model?

> What is the maximum number of common factors?

\_ J

Note: Not all covariance matrix can be factored as LL'+¥, where the number of factors m << p





Discussions (1) Unigueness

» Consider orthogonal matrix T

X - n= LF +¢ Check model assumptions
=L(TT)F +¢ _ ,
L is not unique!
=(LT)(T'F)+¢
L*=LT, F*=T'F The communalities are not affected by choices of T

X-p=L*F*+¢

[ > Factor rotation ]

Textbook 9.1, 9.2



Methods of Estimation

» Suppose x,,x,, -,X_ represent nindependentdrawingsfrom some p-

dimensional population, with mean vector p and covariance matrix X .

» Sample covariance matrix S, sample correlation matrix R

> Objective: find [,and ¥, with S~LL'+¥

I = A)e|e' + Aee) + -
| 2%2%2

= [VAe, | Ve |

+ Age,e,

e i VA, e

o)

..............

............

I = L L + 0 =LL

(p¥p) (pxp)(pXp) (pxp)

The spectral decompositionis not useful!
# common factors = # variables



Estimation: Principal Component Approach

» When the last p-m eigenvalues are small, neglect the contribution of the

corresponding eigenvalue-eigenvector pairs

Whatis‘ff'?
| Ve ]
. . VA, € What is communality h2 ?
T=(Vhe | Ve - VAne,] 2e3 = L L yh

(pXm) (mXp)

| VA, ':-u Not diagonal

The specific variances may be taken to be the diagonal elements Of[ L-LL ]

Note: the estimated loadings for a given factor do not change as the number of factors
is increased.



Selection of m

e Similar to PCA Matrix Approximation
« Consider the residual matrix S-(LL'+¥)

* It can be shown that
Sumof Squaredentriesof S — (LL'+¥) < A2 +---+ A2

* Consequently, a small value for the sum of the squares of the
neglected eigenvalues implies a small value for the sum of the

squared errors of approximation.



Selection of m: another perspective

e What is the total variance in X?
e What is the contribution of common factor i to the total variance?
* Proportion of variance explained by the common factors



Example 9.3: Factor Analysis of CP Data

Attribute (Variable)
Taste

Good buy for money
Flavor

Suitable for snack
Provides lots of energy

1
2
3
4
5

2 3 4 5
02 42 .01
1.00 7
13 100 S0 .11
71 S50 100
8 11 79 1.00

What is the maximum m?

Table 9.1
Estimate'd factor
loadings Specific
&= Vi, Communalitics variances
Variable — F, h W= 1~k
1. Taste 56 82
2. Good buy
for money 78 -3
3. Flavor 65 75
4. Suitable
for snack 94 -.10
5. Provides
lots of encrgy | .80 | -.54 -
Eigenvalues -
Cumulative
rtion
of total
(standardized)

sample vanance




Example 9.3: Factor Analysis of CP Data

Attribute (Variable)
Taste

Good buy for money
Flavor

Suitable for snack
Provides lots of energy

1
2
3
4
5

1 2 3 a4 s
(100 02 2 .0
® 100 03 M ‘
9% 13 100 .50
42 71 50 100 @
01 8 a1 79 1.00

What is the maximum m?

Table 9.1
Estimated factor
loadings Specific
&= \/i-,i,, Communalitics variances
Variable —F F, hi v =1~ h
1. Taste 56 82 98 02
2. Good b
for mong 78 ~.53 88 A2
3. Flavor 65 75 98 02
4. Suitable
f(: snack 9 -.10 89 A1
5. Provides
lots of encrgy | .80 -.54 93 07
Eigenvalues 2.85 1.81
Cumulative
rtion
of wrdmd)
(standardi
sample vanance SN 932




Estimation: Principal Factor Solution

* Intuitive idea: the common factors should account for the off-
diagonal elements, as well as the communality portions of the
diagonal elements

Initial W
X-n=L F+ ¢
(px1) (pxm) (mx1)  (pxl) . ~ ,
Find L, thelargest meigenvectors of the

~=LL eigendecomposition of S- ¥

Y = diag(S - EE')




Discussions

* Choice of initial estimates of specific variances
* Some of the eigenvalues of S-¥ may be negative
* Communality may exceed total variance, Heywood case

n~~/

* Reasonable suggestion of how to initial W

h;"2=1—¢;"=1-%
r

r" isthei-thdiagonalelementof R™



Estimation: Maximum Likelihood Method

* Assumption: the common factors and the specific factors are jointly
normally distributed

X-p=L F+ ¢ X~ N (1I)

(px1) (pxm) (mx1)  (px1)
F~N (0,1) =  I-LL4+¥

i w-ly
e~ N,(0,%) subjecttoL'? "L = A



L(p,T)=(27) " | 2] exp{—%tr[z*é (%, = X)(x, = X)'+n(X - ) (X - )]}

(n-1)p _(n-1)

[ el (Y, -0, -0

= (2.7r)_

P 1

x(27) " | 2|2 eXp{—g(i—u)'E'l(i—u)}

The model dependson Land¥ through ¥ =LL'+¥
It is not well defined because of multiplicity of choices of L

Impose computationally convenientuniquenesscondition:
L'WY 'L =A, Aisadiagonalmatrix

R function, factanall()



* Result 9.1 Let X, X,, -+, X,, be a random sample from Np(u, Y),
where X = LL' + W is the covariance matrifoo/[ the m common factor
model. The maximum likelihood estimators L, ¥, and T subject to
L¥ 'L’ being diagonal.

Then, the MLE of the communalities are

>
>
>

A

W =12+ +---+12, fori=1,2,---,p

SO

Proportion of totalsample jl% _|_f12, I
J J Pl

variancedueto j-thfactor| SitSp+-+5,,



1
* If the variables are standardized sothat Z =V 2(X—p)

* What is the covariance matrix p?

p — V—1/22v—1/2 — (V—1/2L)(V—1/2L)!+V—1/2TV—1/2

* Thus, we have a factorization of p:

L =V—1/2L T =V_1/2TV_1/2

* The MLE of p is

~~

( 1/2 )(V 1/2L) +V 1/2\PV—1/2

- - |
L L '+

~

‘PZ

Question:
Why?

Whatis V29

DoesPC approach havesimilar property?

Note:

» The MLE method could produce very different results
when m—> m+1

» The MLE method can also experience difficulties with
Heywood cases




factanal

Example 9.5 Factor Analysis of stock-price data

——

Table 9.3 L
[ Maximum likelihood Principal components |
' Estimated factor | Specific Estimated factor Specific |
_loadings variances loadings variances |-
Variable F, E | w=1-k R F
| - 437
1. J P Morgan 115 755 132 A3
2. Citibemkg 32 788 831 -.280
3. Wells Fargo 182 652 726 -.374
4. Royal Dutch Shell 1.000 =000 605 6%
5. Texaco 683 - 032 563 719
! . 1
Cumulative ]
proportion of total
(standardized)
sample variance
explained 323 | 647 A87 769

Discussion:

» Are the columns orthogonal?
» Estimated value

» % of total variance explained?

Homework:
princomp()
factanal()



A Large Sample Test for the Number of
Common Factors

* Normality Assumption: the common factors and the specific factors
are jointly normally distributed

H,: X = L L'+ ¥ ,subjecttoL'"YL=A

(pxp)  (pxm)(mxp) (pxp)

H,: Xanyotherpositive definte matrix

maximum likelihoodunder H,

e Likelihood Ratio test —2InA=-2In —
maximizedlikelihood



 Under alternative, what is the MLE estimator?

N o2 -1
1 x,):.=n—S,orSn
n

the maximizedlikelihood x| S |

e Under null:

fi =X

Y =LL'+¥

-n/2 _—-npl/2
e p

—2InA=-2In

maximum likelihood under H,

Degree of Freedom :

1

maximizedlikelihood

1

V-V, =—p(p+1)—p(m+1)+5m(m—1)

2

-

—~

R

'S

.

|

N 1 A n
the maximized|likelihood oc| LL'+W¥ | exp {—En tr[(LL'+‘I’)'ISn]}




Factor Rotation

* Factor loading is not unique

* Initial loading + orthogonal transformation
L*=LT, withTT'=T'T =1

* Question

* Is the covariance/correlation matrix changed after rotation? What about
residual matrix, estimated specific variances, communalities?

 Why rotation? (Interpretation, PC approach)
* Criteria? What is a desirable result?



Whatis “simpler” structure?

* |deally, we should like to see a pattern of loadings such that each
variable loads highly on a single factor and has small to moderate

oadings on the remaining factors.

J

Table 9.7 B '
Estimated Rotated
factor estimated factor - .
loadings loadings Communalities | -
Variable F F; Fi F hi |
1. Taste .56 8 (99) gg
2. Good buy for money 78 52 - -
3. Flavor 65 75 A 98
4. Suitable for snack 94 -.10 84 A 89
5. Provides lots of energy 80 -.54 97 -02 93 N
Cumulative proportion
of total (standardized)
sample variance explained ST1 932 507 932

—— ———

F, i
4 /f
5’ /,I .3 .|
.2
/
/
- F
"L\\o? 5 10
SN 6
~.*3
Pl N
\\‘
5 "



Varimax Criterion
=1 /h

Varimax procedure selects the orthogonal transformation T that
maximizes

NOXREN SR

y_L
p

y oy

J=1 jthfactor

variance of squares of (scaled)loadings for



Factor Score

* Recall: what are the scores in principal component analysis?
* Factor score v.s. PC score

Question:

¢ WEightGd least squares method » What is the factor scores if MLE

method is used?
» What if the correlation matrix is
factored?

X-n=L F+ ¢

(o) (pxm) (mxl) (px1)

P g2

L =g 'Wle=(x-p-LEYY ' (x-p-Lf) (1)
=Y,

f=(L'"P'L)'L'Y " (x-p)

TakeL,¥,and 1L = X as the true value to obtain the factor score



Factor Score — Regression Method

e Recall: multivariate normal distribution, conditional distribution
X-pn=LF+¢
X ~ N, (n,LL'+¥)

* Q: the joint distribution of (X-n,F)?
* Q: the conditional distribution F|X ?



R

F~N (0,I)

X —

mean=E(F |x)=L'Z ' (x-p)=L'"(LL'+¥) ' (x —p)

L 1

m

[LL'+‘I’ L ]

Relationship to mean structure of
response in regression analysis

covariance = Cov(F|x)=1 -L'X"'L=1 -L'(LL'+¥)'L

The j-th factor score vector is given by

)

—h

=L'L(x,-X)=L'(LL'+'¥)"'(x, -X)

J



Discussion (I)

(1)Regression method and WLS method

(an

f% =L'E”(x,-X)=L'(LL'+¥)"'(x, - X)

\

L'(L'L+%¥)" =I+L'?'L)"'L'"P™" (HW, see exce

\_ /

¥
eWLS Coar-11 \-1\p R
£ = ([+(L"? L),

rcise 9.6)

(2)Sis oftenused for T rather than LL'+¥

£R - -1 =
f'=L'S"(x;-X)

cR r v -l
(3)f =L.'"R"z,



Discussion (1)

* Factor analysis versus Principal Component Analysis
cR r 1o -1 —
f°=L'S"(x; -X)

* Consider PC approach to estimate the factor loadings
Since S=PAA'L=PA"?

cR r 1¢ -1 — 1/2 N\ -1y —
f-=L'S"(x; -X)=(PA"") (PA"P')(x; -X)

= A‘l/{ '(Xj — )—()] PC score




Discussion (1)
e Factor rotation [ *=LT.f*=T'f.

 Strategy for factor analysis
1. Perform a principal component factor analysis

2. Perform a maximum likelihood factor analysis

3. Compare the solutions obtained from the two factor analyses

4. Repeat the steps 1-3 for the other number of common factors m
5. Forlarge data sets, splitthem in half and perform FA on each part



Factor Analysis

/79.2 Orthogonal Factor Model
» Common factor
» Specific factor
» Factor loading
» Communality

\_ —

|

9.3 Methods of Estimation

» PC method

» Principal factor solution

\> Maximum likelihood method

|

U

9.4: Factor Rotation
» Varimax criteria

-

9.5: Factor Scores
» Weighted least squares method
» Regression method

1

Discussions:
PCA and Factor Analysis




