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Overview	of	Factor	Analysis
Ø Early	development	in	psychometrics	by	Karl	Pearson,	Charles	Spearman,	etc
Ø To	describe	the	covariance	structure among	many	variables	with	a	few	unobservable	or	

latent variables	called	factors	
• Reduction:	reduce	high	dimension	data	to	a	few	variables
• Interpretation:	explain	the	covariance	of	observed	variables	with	latent	factors
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Orthogonal	Factor	Model	(I)
• The	observable	random	vector	X,	with	p components,	with	mean	!
and	covariance	#

• X	is	linearly	dependent	upon	a	few	common factors	and	specific

factors,	with	
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Orthogonal	Factor	Model	(II)
• Assumptions	continued
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Covariance	Structure	Implied
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Communality	+	Specific	variance
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Discussions	(I)

Ø How	many	parameters	are	there	in	a	covariance	matrix?
Ø How	many	parameters	are	there	in	the	orthogonal	factor	model?
Ø What	is	the	maximum	number	of	common	factors?

See	Example	9.2	in	textbook

Note: Not	all	covariance	matrix	can	be	factored	as															,	where	the	number	of	factors		ΨLL +' pm <<





Discussions	(II)

Ø Consider	orthogonal	matrix	T

Ø Factor	rotation

Textbook	9.1,	9.2
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L is	not	unique!

The	communalities	are	not	affected	by	choices	of	T



Methods	of	Estimation

Ø Suppose																								represent	n independent	drawings	from	some	p-

dimensional	population,	with	mean	vector					and	covariance	matrix					.

Ø Sample	covariance	matrix	S, sample	correlation	matrix	R

Ø Objective:	find														,	with		

n21 x,,x,x !

µ Σ

ΨL ˆˆ 	and	 ΨLLS ˆˆˆ 	'		 +≈

The	spectral	decomposition	is	not	useful!
#	common	factors	=	#	variables



Estimation:	Principal	Component	Approach

Ø When	the	last		p-m eigenvalues	are	small,	neglect	the	contribution	of	the	

corresponding	eigenvalue-eigenvector	pairs

The	specific	variances	may	be	taken	to	be	the	diagonal	elements	of	 '~~LLΣ −
Note: the	estimated	loadings	for	a	given	factor	do	not	change	as	the	number	of	factors
is	increased.
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Selection	of	m

• Similar	to	PCA
• Consider	the	residual	matrix
• It	can	be	shown	that

• Consequently,	a	small	value	for	the	sum	of	the	squares	of	the	
neglected	eigenvalues	implies	a	small	value	for	the	sum	of	the	
squared	errors	of	approximation.	

)~'~~( ΨLLS +−

22
1

ˆˆ)~'~~( pm λλ ++≤+− + !ΨLLSof		entries	Squaredof		Sum
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Selection	of	m:	another	perspective

• What	is	the	total	variance	in	X?
• What	is	the	contribution	of	common	factor	i to	the	total	variance?
• Proportion	of	variance	explained	by	the	common	factors



Example	9.3:	Factor	Analysis	of	CP	Data
What	is	the	maximum	m?



Example	9.3:	Factor	Analysis	of	CP	Data
What	is	the	maximum	m?



Estimation:	Principal	Factor	Solution

• Intuitive	idea:	the	common	factors	should	account	for	the	off-
diagonal elements,	as	well	as	the	communality	portions	of	the	
diagonal	elements	
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Discussions

• Choice	of	initial	estimates	of	specific	variances
• Some	of	the	eigenvalues	of														may	be	negative
• Communality	may	exceed	total	variance,	Heywood	case	
• Reasonable	suggestion	of	how	to	initial	 	

ΨS ~-

Ψ~

1-of		element	diagonal	th-	the	is	 Rir

r
h

ii

iiii
111 *2* −=−= ψ



Estimation:	Maximum	Likelihood	Method

• Assumption:	the	common	factors	and	the	specific	factors	are	jointly	
normally distributed
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Impose	computationally	convenient	uniqueness	condition:

matrix	diagonal	a	is				ΔΔLΨL ,' 1 =−

The	model	depends	on																				through
It	is	not	well	defined	because	of	multiplicity	of	choices	of		
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• Result	9.1	Let	$%, $',⋯ ,$)	be	a	random	sample	from	*+(-, #),	
where	# = 001 + 3 is	the	covariance	matrix	for	the	m common	factor	
model.	The	maximum	likelihood	estimators	04 ,35 ,	and		-6 subject	to	

being	diagonal.
Then,	the	MLE	of	the	communalities	are
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• If	the	variables	are	standardized	so	that		7 = 89
:
;($ − -)

• What	is	the	covariance	matrix	=?

• Thus,	we	have	a	factorization	of	=:

• The	MLE	of	= is
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Note:
Ø The	MLE	method	could	produce	very	different	results
when	mà m+1
Ø The	MLE	method	can	also	experience	difficulties	with	
Heywood	cases



Example	9.5	Factor	Analysis	of	stock-price	data

Discussion:	
Ø Are	the	columns	orthogonal?
Ø Estimated	value
Ø %	of	total	variance	explained?

factanal

Homework:
princomp()
factanal()



A	Large	Sample	Test	for	the	Number	of	
Common	Factors

• Normality	Assumption:	the	common	factors	and	the	specific	factors	
are	jointly	normally	distributed

• Likelihood	Ratio	test

matrix	definte	positive	other	any				
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• Under	alternative,	what	is	the	MLE	estimator?

• Under	null:
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Factor	Rotation

• Factor	loading	is	not	unique
• Initial	loading	+	orthogonal	transformation

• Question
• Is	the	covariance/correlation	matrix	changed	after	rotation?	What	about	
residual	matrix,	estimated	specific	variances,	communalities?
• Why	rotation?	(Interpretation,	PC	approach)
• Criteria?	What	is	a	desirable	result?
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What	is	“simpler”	structure?

• Ideally,	we	should	like	to	see	a	pattern	of	loadings	such	that	each	
variable	loads	highly	on	a	single	factor	and	has	small	to	moderate	
loadings	on	the	remaining	factors.



Varimax Criterion
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Factor	Score

• Recall:	what	are	the	scores	in	principal	component	analysis?
• Factor	score	v.s.	PC	score
• Weighted	least	squares	method

score	factor	the	obtain	to	value	true	the	as		and	Take
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method	 is	used?
Ø What	if	the	correlation	matrix is	

factored?



Factor	Score	– Regression	Method

• Recall:	multivariate	normal	distribution,	conditional	distribution

• Q:	the	joint	distribution	of																	?
• Q: the	conditional	distribution										?
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response	 in	regression	analysis

The		j-th factor	score	vector	is	given	by
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Discussion	(I)
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Discussion	(II)	

• Factor	analysis	versus	Principal	Component	Analysis

• Consider	PC	approach	to	estimate	the	factor	loadings
Since	
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Discussion	(III)	

• Factor	rotation

• Strategy	for	factor	analysis
1. Perform	a	principal	component	factor	analysis
2. Perform	a	maximum	likelihood	factor	analysis
3. Compare	the	solutions	obtained	from	the	two	factor	analyses
4. Repeat	the	steps	1-3	for	the	other	number	of	common	factors	m
5. For	large	data	sets,	split	them	in	half	and	perform	FA	on	each	part
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Factor	Analysis

9.4:	Factor	Rotation
Ø Varimax criteria

9.5:	Factor	Scores
Ø Weighted	 least	squares	method
Ø Regression	method

Discussions:	
PCA	and	Factor	Analysis

9.2	Orthogonal	Factor	Model
Ø Common	 factor
Ø Specific	factor
Ø Factor	loading
Ø Communality

9.3	Methods	of	Estimation
Ø PC	method
Ø Principal	factor	solution
Ø Maximum	likelihood	method


