多元统计分析

第6讲 因子分析

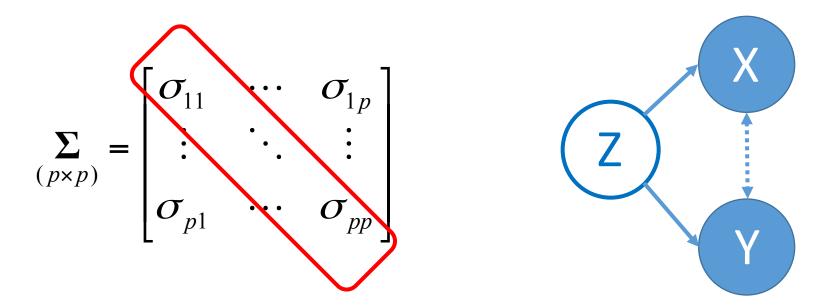
Johnson & Wichern 9.1-9.6, Supplement 9A

统计学研究中心 侯琳 houl@tsinghua.edu.cn

2016-2017春季学期

Overview of Factor Analysis

- > Early development in psychometrics by Karl Pearson, Charles Spearman, etc
- To describe the covariance structure among many variables with a few unobservable or latent variables called factors
 - Reduction: reduce high dimension data to a few variables
 - Interpretation: explain the covariance of observed variables with latent factors



Orthogonal Factor Model (I)

- The observable random vector **X**, with *p* components, with mean μ and covariance Σ
- X is linearly dependent upon a few common factors and specific

factors, with
loading

$$X_1 - \mu_1 = l_{11}F_1 + l_{12}F_2 + \dots + l_{1m}F_m + \varepsilon_1$$
 Or $X_{(p\times 1)} = L_{(p\times m)}F_{(m\times 1)} + \varepsilon_{(p\times 1)}F_{(p\times 1)}$
 $X_2 - \mu_2 = l_{21}F_1 + l_{22}F_2 + \dots + l_{2m}F_m + \varepsilon_2$
:
 $X_p - \mu_p = l_{p1}F_1 + l_{p2}F_2 + \dots + l_{pm}F_m + \varepsilon_p$

Orthogonal Factor Model (II)

Assumptions continued

$$\mathbf{X} - \mathbf{\mu} = \mathbf{L}_{(p \times m)} \mathbf{F}_{(m \times 1)} + \mathbf{\varepsilon}_{(p \times 1)}$$

$$E(\mathbf{F}) = 0, \quad \operatorname{Cov}(\mathbf{F}) = E(\mathbf{FF'}) = \mathbf{I}_{(m \times m)}$$

$$E(\mathbf{\epsilon}) = 0, \quad \operatorname{Cov}(\mathbf{\epsilon}) = E(\mathbf{\epsilon}\mathbf{\epsilon'}) = \mathbf{\Psi}_{(p \times p)} \qquad \mathbf{\Psi} = \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}$$

$$\operatorname{Cov}(\mathbf{\epsilon}, \mathbf{F}) = E(\mathbf{\epsilon}\mathbf{F'}) = \mathbf{0}_{(p \times m)}$$

Covariance Structure Implied

$$(X - \mu)(X - \mu)' = (LF + \epsilon)((LF + \epsilon)'$$

 $= (LF)(F'L') + \varepsilon(F'L') + (LF)\varepsilon' + \varepsilon\varepsilon'$

 $\Sigma = \operatorname{Cov}(\mathbf{X}) = E(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'$

 $= LL' + \Psi$

 $(\mathbf{X} - \boldsymbol{\mu})\mathbf{F}' = (\mathbf{L}\mathbf{F} + \boldsymbol{\varepsilon})\mathbf{F}'$

 $\operatorname{Cov}(\mathbf{X}, \mathbf{F}) = E(\mathbf{X} - \boldsymbol{\mu})\mathbf{F}' = \mathbf{L}$

= $LE(FF')L'+E(\varepsilon F')L'+LE(F\varepsilon')$

$$+E(\varepsilon \varepsilon')$$

 \longrightarrow Cov $(X_i, F_i) = l_{ii}$

Communality + Specific variance

$$\sigma_{ik} = \operatorname{Cov}(X_i, X_k) = \mathbf{l_i'l_k}$$

$$= l_{i1}l_{k1} + \dots + l_{im}l_{km}$$

$$\sigma_{ii} = l_{i1}^2 + l_{i2}^2 + \dots + l_{im}^2 + \psi_i$$
$$= h_i^2 + \psi_i$$

Discussions (I)

- > How many parameters are there in a covariance matrix?
- > How many parameters are there in the orthogonal factor model?
- What is the maximum number of common factors?

Note: Not all covariance matrix can be factored as $LL'+\Psi$, where the number of factors $m \ll p$

See Example 9.2 in textbook

Discussions (II)

The communalities are not affected by choices of **T**

Consider orthogonal matrix T

 $X - \mu = LF + \epsilon$ Check model assumptions

$$= \mathbf{L}(\mathbf{T}\mathbf{T}')\mathbf{F} + \mathbf{\varepsilon}$$

L is not unique!

 $= (\mathbf{LT})(\mathbf{T'F}) + \boldsymbol{\varepsilon}$

 $L^* = LT, F^* = T'F$

 $\mathbf{X} - \mathbf{\mu} = \mathbf{L} * \mathbf{F} * + \boldsymbol{\varepsilon}$

Factor rotation

Textbook 9.1, 9.2

Methods of Estimation

- > Suppose x_1, x_2, \dots, x_n represent *n* independent drawings from some pdimensional population, with mean vector μ and covariance matrix Σ .
- Sample covariance matrix **S**, sample correlation matrix **R**
- > Objective: find $\hat{\mathbf{L}}$ and $\hat{\Psi}$, with $\mathbf{S} \approx \hat{\mathbf{L}} \hat{\mathbf{L}}' + \hat{\Psi}$

$$\boldsymbol{\Sigma} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$$
$$= \left[\sqrt{\lambda_1} \mathbf{e}_1 \mid \sqrt{\lambda_2} \mathbf{e}_2 \mid \dots \mid \sqrt{\lambda_p} \mathbf{e}_p \right] \begin{bmatrix} \sqrt{\lambda_1} \mathbf{e}_1' \\ \hline{\sqrt{\lambda_2} \mathbf{e}_2'} \\ \hline{\vdots} \\ \hline{\sqrt{\lambda_p} \mathbf{e}_p'} \end{bmatrix}$$

$$\sum_{(p \times p)} = \underbrace{\mathbf{L}}_{(p \times p)(p \times p)} \underbrace{\mathbf{L'}}_{(p \times p)} + \underbrace{\mathbf{0}}_{(p \times p)} = \mathbf{L}\mathbf{L'}$$

The spectral decomposition is not useful! # common factors = # variables

Estimation: Principal Component Approach

➤ When the last *p-m* eigenvalues are small, neglect the contribution of the

corresponding eigenvalue-eigenvector pairs

$$\boldsymbol{\Sigma} \doteq \left[\sqrt{\lambda_{1}} \mathbf{e}_{1} \mid \sqrt{\lambda_{2}} \mathbf{e}_{2} \mid \dots \mid \sqrt{\lambda_{m}} \mathbf{e}_{m}\right] \begin{bmatrix} \frac{\sqrt{\lambda_{1}} \mathbf{e}_{1}'}{\sqrt{\lambda_{2}} \mathbf{e}_{2}'} \\ \vdots \\ \sqrt{\lambda_{m}} \mathbf{e}_{m}' \end{bmatrix} = \underbrace{\mathbf{L}}_{(p \times m) \ (m \times p)} \mathbf{L}' \\ \text{What is communality } \widetilde{\mathbf{h}}_{i}^{2} ?$$
Not diagonal

The specific variances may be taken to be the diagonal elements of

$$\mathbf{\Sigma} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}'$$

 \sim

Note: the estimated loadings for a given factor do not change as the number of factors is increased.

Selection of m

- Similar to PCA
- Consider the residual matrix $S (\widetilde{L}\widetilde{L}' + \widetilde{\Psi})$
- It can be shown that

Sum of Squared entries of $\mathbf{S} - (\widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' + \widetilde{\Psi}) \leq \hat{\lambda}_{m+1}^2 + \dots + \hat{\lambda}_p^2$

• Consequently, a small value for the sum of the squares of the neglected eigenvalues implies a small value for the sum of the squared errors of approximation.

Matrix Approximation

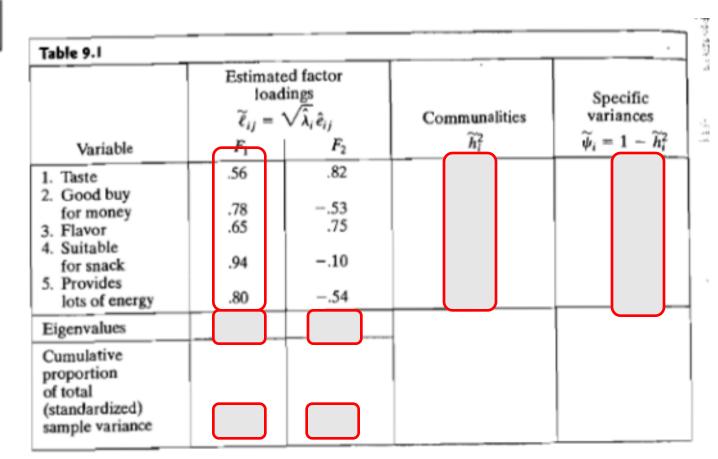
Selection of *m*: another perspective

- What is the total variance in **X**?
- What is the contribution of common factor *i* to the total variance?
- Proportion of variance explained by the common factors

Example 9.3: Factor Analysis of CP Data

Attribute (Variable)		1	2	3	4	5
Taste	1	1.00	.02	(96)	.42	.01
Good buy for money	2	.02	1.00	.13	.71	(85)
Flavor	3	.96	.13	1.00	.50	.11
Suitable for snack	4	.42	.71	.50	1.00	(79)
Provides lots of energy	5	.01	.85	.11	.79	1.00

What is the maximum *m*?



Example 9.3: Factor Analysis of CP Data

Attribute (Variable)		1	2	3	4	5
Taste	1	1.00	.02	(96)	.42	.01
Good buy for money	2	.02	1.00	.13	.71	(85)
Flavor	3	.96	.13	1.00	.50	.11
Suitable for snack	4	.42	.71	.50	1.00	(79)
Provides lots of energy	5	.01	.85	.11	.79	1.00

What is the maximum *m*?

Table 9.1					
	loa	ted factor dings $\sqrt{\hat{\lambda}_i} \hat{e}_{ij}$	Communalities	Specific variances	
Variable	F	F_2	\widetilde{h}_{l}^{2}	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	
1. Taste	.56	.82	.98	.02	
 Good buy for money Flavor 	.78 .65	53 .75	.88 .98	.12 .02	
 Suitable for snack Provides 	.94	10	.89	.11	
lots of energy	.80	54	.93	.07	
Eigenvalues	2.85	1.81			
Cumulative proportion of total (standardized) sample variance	.571	.932			

be trip of

1

Estimation: Principal Factor Solution

 Intuitive idea: the common factors should account for the offdiagonal elements, as well as the communality portions of the diagonal elements

$$\mathbf{X} - \mathbf{\mu} = \mathbf{L}_{(p \times m)} \mathbf{F}_{(m \times 1)} + \mathbf{\varepsilon}_{(p \times 1)}$$
$$\mathbf{\Sigma} = \mathbf{L}\mathbf{L'} + \mathbf{\Psi}$$

Initial $\widetilde{\Psi}$ Find \widetilde{L} , the largest m eigenvectors of the eigen decomposition of $\mathbf{S} - \widetilde{\Psi}$ $\widetilde{\Psi} = diag(\mathbf{S} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}')$

Discussions

- Choice of initial estimates of specific variances
- Some of the eigenvalues of $\, \, {f S}$ $\, \widetilde{\Psi} \,$ may be negative
- Communality may exceed total variance, Heywood case
- Reasonable suggestion of how to initial $\,\widetilde{\Psi}\,$

$$h_i^{*2} = 1 - \psi_i^* = 1 - \frac{1}{r^{ii}}$$

 r^{ii} is the *i* - th diagonal element of \mathbf{R}^{-1}

Estimation: Maximum Likelihood Method

 Assumption: the common factors and the specific factors are jointly normally distributed

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{n}{2}} |\boldsymbol{\Sigma}|^{-\frac{n}{2}} \exp\{-\frac{1}{2}tr[\boldsymbol{\Sigma}^{-1}(\sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}})(\mathbf{x}_{j} - \overline{\mathbf{x}})' + n(\overline{\mathbf{x}} - \boldsymbol{\mu})(\overline{\mathbf{x}} - \boldsymbol{\mu})')]\}$$

$$= (2\pi)^{-\frac{(n-1)p}{2}} |\Sigma|^{-\frac{(n-1)}{2}} \exp\{-\frac{1}{2}tr[\Sigma^{-1}(\sum_{j=1}^{n} (\mathbf{x}_j - \overline{\mathbf{x}})(\mathbf{x}_j - \overline{\mathbf{x}})')]\}$$

$$\times (2\pi)^{-\frac{p}{2}} |\Sigma|^{-\frac{1}{2}} \exp\{-\frac{n}{2}(\overline{\mathbf{x}}-\boldsymbol{\mu})'\Sigma^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})\}$$

The model depends on L and Ψ through $\Sigma = LL' + \Psi$ It is not well defined because of multiplicity of choices of L

Impose computationally convenient uniqueness condition:

 $\mathbf{L}' \Psi^{-1} \mathbf{L} = \Delta$, Δ is a diagonal matrix

R function, factanal()

• Result 9.1 Let X_1, X_2, \dots, X_n be a random sample from $N_p(\mu, \Sigma)$, where $\Sigma = LL' + \Psi$ is the covariance matrix for the *m* common factor model. The maximum likelihood estimators $\hat{L}, \hat{\Psi}$, and $\hat{\mu}$ subject to $\hat{L}\hat{\Psi}^{-1}\hat{L}$ being diagonal.

Then, the MLE of the communalities are

$$\hat{h}_{i}^{2} = \hat{l}_{i1}^{2} + \hat{l}_{i2}^{2} + \dots + \hat{l}_{im}^{2}$$
, for i = 1,2,...,p

$$\begin{pmatrix} \text{Proportion of total sample} \\ \text{variance due to } j - \text{th factor} \end{pmatrix} = \frac{\hat{l}_{1j}^2 + \hat{l}_{1j}^2 + \dots + \hat{l}_{pj}^2}{s_{11} + s_{22} + \dots + s_{pp}}$$

- If the variables are standardized so that $Z = V^{-\frac{1}{2}}(X \mu)$
- What is the covariance matrix $oldsymbol{
 ho}$?

 $\rho = \mathbf{V}^{-1/2} \mathbf{\Sigma} \mathbf{V}^{-1/2} = (\mathbf{V}^{-1/2} \mathbf{L}) (\mathbf{V}^{-1/2} \mathbf{L})' + \mathbf{V}^{-1/2} \mathbf{\Psi} \mathbf{V}^{-1/2}$

• Thus, we have a factorization of ρ :

$$L_z = V^{-1/2}L, \Psi_z = V^{-1/2}\Psi V^{-1/2}$$

- The MLE of ${oldsymbol{
ho}}$ is

$$\widehat{\boldsymbol{\rho}} = (\widehat{\mathbf{V}}^{-1/2}\widehat{\mathbf{L}})(\widehat{\mathbf{V}}^{-1/2}\widehat{\mathbf{L}})' + \widehat{\mathbf{V}}^{-1/2}\widehat{\boldsymbol{\Psi}}\widehat{\mathbf{V}}^{-1/2}$$
$$= \widehat{\mathbf{L}}_{-}\widehat{\mathbf{L}}_{-}' + \widehat{\boldsymbol{\Psi}}_{-}$$

Question : Why? What is $\widehat{\mathbf{V}}^{-1/2}$?

Does PC approach have similar property?

Note:

> The MLE method could produce very different results when $m \rightarrow m+1$

➤ The MLE method can also experience difficulties with Heywood cases

Example 9.5 Factor Analysis of stock-price data

Table 9.3							
	N	faximum li	ikelihood	Principal components			
	Estimated factor loadings		Specific variances	Estimated factor loadings		Specific variances	
Variable	F_1	F_2	$\hat{\psi}_i = 1 - \hat{h}_i^2$	F_1	F2	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	
 J P Morgan Citibank Wells Fargo Royal Dutch Shell Texaco 	.115 .322 .182 1.000 .683	.755 .788 .652 000 032	.42 .27 .54 .00 .53	.732 .831 .726 .605 .563	437 280 374 .694 .719	.27 .23 .33 .15 .17	
Cumulative proportion of total (standardized) sample variance explained	.323	.647		.487	.769		

Discussion:

- > Are the columns orthogonal?
- Estimated value
- > % of total variance explained?

Homework: princomp() factanal()

A Large Sample Test for the Number of Common Factors

 Normality Assumption: the common factors and the specific factors are jointly normally distributed

 $H_0: \sum_{(p \times p)} = \mathbf{L}_{(p \times m)} \mathbf{L'}_{(m \times p)} + \mathbf{\Psi}_{(p \times p)}, \text{ subject to } \mathbf{L'} \mathbf{\Psi} \mathbf{L} = \mathbf{\Delta}$

- H_1 : **\Sigma** any other positive definte matrix
- Likelihood Ratio test $-2 \ln \Lambda = -2 \ln \left[\frac{\text{maximum likelihood under H}_0}{\text{maximized likelihood}} \right]$

• Under alternative, what is the MLE estimator?

$$\hat{\boldsymbol{\mu}} = \overline{\mathbf{x}}, \ \hat{\boldsymbol{\Sigma}} = \frac{n-1}{n} \mathbf{S}, \text{ or } \mathbf{S}_{n}$$

 $\hat{\mu} = \overline{\mathbf{X}}$

the maximized likelihood $\propto |\mathbf{S}_n|^{-n/2} e^{-np/2}$

• Under null:

$$\hat{\mu} = \bar{\mathbf{x}}$$

 $\hat{\Sigma} = \hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$
the maximized likelihood $\propto |\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}|^{-n/2} \exp\{-\frac{1}{2}n\operatorname{tr}[(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi})^{-1}\mathbf{S}_n]\}$

Factor Rotation

- Factor loading is not unique
- Initial loading + orthogonal transformation

 $\widehat{\mathbf{L}}^* = \widehat{\mathbf{L}}\mathbf{T}$, with $\mathbf{T}\mathbf{T}' = \mathbf{T}'\mathbf{T} = \mathbf{I}$

- Question
 - Is the covariance/correlation matrix changed after rotation? What about residual matrix, estimated specific variances, communalities?
 - Why rotation? (Interpretation, PC approach)
 - Criteria? What is a desirable result?

What is "simpler" structure?

• Ideally, we should like to see a pattern of loadings such that each variable loads highly on a single factor and has small to moderate loadings on the remaining factors.

	Estimated factor loadings		Rotated estimated factor loadings		Communalities
Variable	F1	F_2	F_1^{\bullet}	F_2^{\bullet}	\widetilde{h}_{i}^{2}
 Taste Good buy for money Flavor Suitable for snack Provides lots of energy 	.56 .78 .65 .94 .80	.82 52 .75 10 54	.02 94) .13 .84 .97	.01 01 .43 02	.98 .88 .98 .89 .93
Cumulative proportion of total (standardized) sample variance explained	.571	.932	.507	.932	

Varimax Criterion

 $\widetilde{l_{ij}}^* = \widehat{l_{ij}}^* / \widehat{h_i}$

Varimax procedure selects the orthogonal transformation **T** that maximizes

$$V = \frac{1}{p} \sum_{j=1}^{m} \left\{ \sum_{i=1}^{p} \left(\widetilde{l}_{ij}^{*} \right)^{4} - \left[\sum_{i=1}^{p} \left(\widetilde{l}_{ij}^{*} \right)^{2} \right]^{2} / p \right\}$$

 $V \propto \sum_{j=1}^{m} \left(variance of squares of (scaled) loadings for$ $jth factor \right)$

Factor Score

- Recall: what are the scores in principal component analysis?
- Factor score v.s. PC score
- Weighted least squares method

$$\mathbf{X} - \boldsymbol{\mu} = \mathbf{L}_{(p \times m)} \mathbf{F}_{(m \times 1)} + \mathbf{\varepsilon}_{(p \times 1)}$$

$$\sum_{i=1}^{p} \frac{\varepsilon_i^2}{\psi_i} = \varepsilon^{-1} \Psi^{-1} \varepsilon = (\mathbf{x} - \boldsymbol{\mu} - \mathbf{L} \mathbf{f})' \Psi^{-1} (\mathbf{x} - \boldsymbol{\mu} - \mathbf{L} \mathbf{f})$$
(1)

$$\widehat{\mathbf{f}} = (\mathbf{L}^{\prime} \boldsymbol{\Psi}^{-1} \mathbf{L})^{-1} \mathbf{L}^{\prime} \boldsymbol{\Psi}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Take $\widehat{L}, \widehat{\Psi}$, and $\widehat{\mu} = \overline{x}$ as the true value to obtain the factor score

Question:

- What is the factor scores if MLE method is used?
- What if the correlation matrix is factored?

Factor Score – Regression Method

• Recall: multivariate normal distribution, conditional distribution

 $\mathbf{X} - \boldsymbol{\mu} = \mathbf{L}\mathbf{F} + \boldsymbol{\varepsilon}$

 $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \mathbf{L}\mathbf{L'+\Psi})$

- Q: the joint distribution of $(X \mu, F)$?
- Q: the conditional distribution $\mathbf{F} \mid \mathbf{X}$?

$$\begin{pmatrix} \mathbf{X} - \boldsymbol{\mu} \\ \mathbf{F} \end{pmatrix} = \begin{pmatrix} \mathbf{L} \\ \mathbf{I}_m \end{pmatrix} \mathbf{F} + \begin{pmatrix} \boldsymbol{\varepsilon} \\ \mathbf{0} \end{pmatrix}$$
$$\mathbf{F} \sim N_m(\mathbf{0}, \mathbf{I})$$

$$\begin{pmatrix} \mathbf{X} - \boldsymbol{\mu} \\ \mathbf{F} \end{pmatrix} \sim N_{p+m} \begin{pmatrix} \mathbf{0}, \begin{bmatrix} \mathbf{L}\mathbf{L'} + \boldsymbol{\Psi} & \mathbf{L} \\ \mathbf{L'} & \mathbf{I}_m \end{bmatrix})$$

Relationship to mean structure of response in regression analysis

mean = E(F | x) = L'
$$\Sigma^{-1}(x - \mu)$$
 = L'(LL'+ Ψ)⁻¹(x - μ)

covariance =
$$\operatorname{Cov}(\mathbf{F} \mid \mathbf{x}) = \mathbf{I}_m - \mathbf{L}' \mathbf{\Sigma}^{-1} \mathbf{L} = \mathbf{I}_m - \mathbf{L}' (\mathbf{L}\mathbf{L}' + \Psi)^{-1} \mathbf{L}$$

The j-th factor score vector is given by

$$\widehat{\mathbf{f}}_{j} = \widehat{\mathbf{L}}' \widehat{\boldsymbol{\Sigma}}^{-1} (\mathbf{x}_{j} - \overline{\mathbf{x}}) = \widehat{\mathbf{L}}' (\widehat{\mathbf{L}} \widehat{\mathbf{L}}' + \widehat{\boldsymbol{\Psi}})^{-1} (\mathbf{x}_{j} - \overline{\mathbf{x}})$$

Discussion (I)

(1)Regression method and WLS method

$$\widehat{\mathbf{f}}^{\mathsf{R}}_{j} = \widehat{\mathbf{L}}' \widehat{\boldsymbol{\Sigma}}^{-1} (\mathbf{x}_{j} - \overline{\mathbf{x}}) = \widehat{\mathbf{L}}' (\widehat{\mathbf{L}} \widehat{\mathbf{L}}' + \widehat{\boldsymbol{\Psi}})^{-1} (\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$\widehat{\mathbf{f}}_{j}^{WLS} = (\widehat{\mathbf{L}}' \widehat{\boldsymbol{\Psi}}^{-1} \widehat{\mathbf{L}})^{-1} \widehat{\mathbf{L}}' \widehat{\boldsymbol{\Psi}}^{-1} (\mathbf{x}_{j} - \mathbf{\bar{x}})$$

 $\widehat{\mathbf{L}}'(\widehat{\mathbf{L}}'\widehat{\mathbf{L}}+\widehat{\Psi})^{-1} = (\mathbf{I}+\widehat{\mathbf{L}}'\widehat{\Psi}^{-1}\widehat{\mathbf{L}})^{-1}\widehat{\mathbf{L}}'\widehat{\Psi}^{-1}$ (HW, see excercise 9.6)

(2) S is often used for $\widehat{\Sigma}$ rather than $\widehat{L}\widehat{L}'\!+\!\widehat{\Psi}$

$$\widehat{\mathbf{f}}_{j}^{R} = \widehat{\mathbf{L}}' \mathbf{S}^{-1} (\mathbf{x}_{j} - \overline{\mathbf{x}})$$

 $(3) \widehat{\mathbf{f}}_{j}^{R} = \widehat{\mathbf{L}}_{z}' \mathbf{R}^{-1} \mathbf{z}_{j}$

 $\widehat{\mathbf{f}}_{j}^{WLS} = (\mathbf{I} + (\widehat{\mathbf{L}}^{\mathsf{T}} \widehat{\boldsymbol{\Psi}}^{-1} \widehat{\mathbf{L}})^{-1}) \widehat{\mathbf{f}}_{j}^{R}$

Discussion (II)

• Factor analysis versus Principal Component Analysis

 $\widehat{\mathbf{f}}_{j}^{R} = \widehat{\mathbf{L}}^{\prime} \mathbf{S}^{-1} (\mathbf{x}_{j} - \overline{\mathbf{x}})$

• Consider PC approach to estimate the factor loadings Since $S = P\Lambda\Lambda', L = P\Lambda^{1/2}$

Discussion (III)

- Factor rotation $\widehat{\mathbf{L}}^* = \widehat{\mathbf{L}}\mathbf{T}, \widehat{\mathbf{f}}_j^* = \mathbf{T}'\widehat{\mathbf{f}}_j$
- Strategy for factor analysis
 - 1. Perform a principal component factor analysis
 - 2. Perform a maximum likelihood factor analysis
 - 3. Compare the solutions obtained from the two factor analyses
 - 4. Repeat the steps 1-3 for the other number of common factors *m*
 - 5. For large data sets, split them in half and perform FA on each part

Factor Analysis

