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6.1 Intro to Subgradients

Some operations on convex functions destroy differentiability but preserve convexity - such as the max-
operation. In these situations, subgradients offer a method of generalizing gradients for optimizing convex
functions that are not necessarily differentiable (where gradient descent does not work).

6.1.1 Subgradients

(a) (b)

Figure 6.1

To say that a function f : <n 7→ < is differentiable at x is to say that there is a single unique linear tangent
such as shown in Fig 6.1a that under estimates the function:

f(y) ≥ f(x) +5f(x)T (y − x), ∀x, y

While in Fig 6.1b we see the function f at x has many possible linear tangents that may fit appropriately.
A subgradient is any g ∈ <n (same dimension as x) such that:

f(y) ≥ f(x) + gT (y − x), ∀y

Thus, if a function is differentiable at a point x then it has a unique subgradient at that point (5f(x)).
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6.1.2 Subdifferentials

A subdifferential is the closed convex set of all subgradients of the convex function f :

∂f(x) = {g ∈ <n : g is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.

6.1.3 Normal Cone

Often an indicator function, IC : <n 7→ <, is employed to remove the contraints of an optimization problem
(note that convex set C ⊆ <n):

min
x∈C

f(x) ⇐⇒ min
x
f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is known as the normal cone, NC(x), of C:

NC(x) = ∂IC(x) = {g ∈ <n : gTx ≥ gT y for any y ∈ C}

6.2 Subgradient Calculus

Here, we provide some basic subgradient calculus for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain convex.

• Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)

• Affine composition: if g(x) = f(Ax+ b), then ∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then

∂f(x) = conv

( ⋃
i:fi(x)=f(x)

∂fi(x)

)
, which is the convex hull of union of subdifferentials of all active

functions at x.

• General pointwise maximum: if f(x) = maxs∈Sfs(x), then

under some regularity conditions (on S, fs), ∂f(x) = cl

{
conv

( ⋃
s:fs(x)=f(x)

∂fs(x)

)}

• Norms: important special case, f(x) = ||x||p. Let q be such that 1/p+ 1/q = 1, then

∂f(x) =

{
y : ||y||q ≤ 1 and yTx = max

||z||q≤1
zTx

}
Why is this a special case? Note ||x||p = max

||z||q≤1
zTx
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6.3 Optimality condition

For a convex f ,
f(x∗) = min

x∈Rn
f(x)⇔ 0 ∈ ∂f(x∗)

The reason is because g = 0 being a subgradient means that for all y

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗)

The analogy to the differentiable case is: ∂f(x) = {∇f(x)}.

6.4 Soft-thresholding

We use Lasso as an example to explain the concept of soft-thresholding. First, let us consider a simplified
Lasso problem:

f(x) = min
x

1

2
||y − x||2 + λ||x||1

And the solution of this problem is x∗ = Sλ(y), where Sλ(y) is the soft-thresholding operator:

Sλ(y) =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

So the subgradients of f(x) is
g = x− y + λs,

where si = sign(xi) if xi 6= 0 and si ∈ [−1, 1] if xi = 0. Now let x∗ = Sλ(y) and we can get g = 0.
Why? If yi > λ, we have x∗i − yi = −λ + λ · 1 = 0. It is similar if yi < λ. If −λ ≤ yi ≤ λ, we have
x∗i − yi = −yi + λ(yiλ ) = 0. Here, si = yi

λ .

6.5 Subgradient method

Given a convex function f : Rn → R, not necessarily differentiable. Subgradient method is just like gradient
descent, but replacing gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, · · ·

where g(k−1) is any subgradient of f at x(k−1). We keep track of best iterate xkbest among x(1), · · · , x(k):

f(x
(k)
best) = min

i=1,··· ,k
f(x(i))

To update each x(i), there are basically two ways to select the step size:

• Fixed step size: tk = t for all k = 1, 2, 3 · · ·

• Diminishing step size: choose tk to satisfy

∞∑
k=1

t2k <∞ ,

∞∑
k=1

tk =∞
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6.6 Convergence analysis

Given the convex function f : Rn → R that satisfies:

• f is Lipschitz continuous with constant G > 0,

|f(x)− f(y)| ≤ G||x− y|| for all x, y

• ||x(1) − x∗|| ≤ R which means it is bounded

Theorem 6.1 For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f(x∗) +

G2t

2

Proof:

||x(k+1) − x∗||2 = ||x(k) − tkg(k) − x∗||2

= ||x(k) − x∗||2 − 2tk(g(k))T (x(k) − x∗) + t2k||g(k)||2

By defintion of the subgradient method, we have

f(x∗) ≥ f(x(k)) + g(k)(x∗ − x(k))

−g(k)
T
≤ −(f(x(k))− f(x∗))

Using this inequality, we have

||x(k+1) − x∗||2 ≤ ||x(k) − x∗||2 − 2tk(f(x(k))− f(x∗)) + tk||g(k)||2

≤ ||x(1) − x∗||2 − 2

k∑
i=1

ti(f(x(i))− f(x∗)) +

k∑
i=1

t2i ||g(i)||2

And this is lower bounded by 0, then we have

0 ≤ ||x(k+1) − x∗||2 ≤ R2 − 2

k∑
i=1

ti(f(x(i))− f(x∗)) +

k∑
i=1

t2iG
2

2

k∑
i=1

ti(f(x(i))− f(x∗)) ≤ R2 +

k∑
i=1

t2iG
2

2(

k∑
i=1

ti)(f(x
(k)
best)− f(x∗)) ≤ R2 +

k∑
i=1

t2iG
2

For a constant step size ti = t:
R2 +G2t2k

2tk
→ G2t

2
, as k →∞,
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and for diminishing step size, we have:

k∑
i=0

t2i ≤ 0,

k∑
i=0

ti =∞

therefore,

R2 +G2
∑k
i=0 t

2
i

2
∑k
i=0 ti

→ 0, as k →∞,

So, consider taking ti = R/(G
√
k), for all i = 1, ..., k. Then we can obtain the following bound:

R2 +G2
∑k
i=0 t

2
i

2
∑k
i=0 ti

=
RG√
k
.

That is, subgradient method has convergence rate of O(1/
√
k), and to get f(x

(k)
best)−f(x∗) ≤ ε, needs O(1/ε2)

iterations.


