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1 Background
Consider a joint distribution p(x, z) where z is the latent variables. In the scenario of Bayesian
statistics, z usually represents the model parameters. Given the prior on z: p(z) and the
likelihood function we obtain from data, p(x|z), we can construct the posterior distribution on
z:

p(z|x) ∝ p(z)p(x|z) (1.1)

where z ∈ Rm, x ∈ Rn. However, it is sometimes very hard to sample or do calculation
from this posterior distribution. Therefore, we may need some technique to approximate the
posterior. One way is Markov chain Monte Carlo (MCMC), it is statistically convincing but
computationally expensive. Another way is using variational inference, a method that is much
faster.

In variational inference, our goal is to find the best alternative distribution within a family
of densities Z that is closed to the posterior under KL divergence.

q ∗ (z) = argmin
q(z)∈Z

KL (q(z)∥p(z|x)) (1.2)

2 The Evidence Lower Bound
The minimization task (1.2) in last section is not computable, since it contains the term log p(x).
Let’s see it.

KL (q(z)∥p(z|x)) = Eq[log q(z)]− Eq[log p(z|x)]
= Eq[log q(z)]− Eq[log p(z, x)] + Eq[log p(x)]

= Eq[log q(z)]− Eq[log p(z, x)] + log p(x) (2.1)

We call this term log p(x) = log
´
p(z, x) dz the evidence and in some cases this term needs

exponential time to compute (the integral).
Instead of minimizing the (1.2), we define the evidence lower bound (ELBO) as

ELBO(q) : = Eq[log p(z, x)]− Eq[log q(z)]

= Eq log p(z) + Eqp(x|z)− Eq log q(z)

= Eqp(x|z)−KL (q(z)∥p(z)) (2.2)

Notice that

ELBO(q) = −KL (q(z)∥p(z|x)) + log p(x) (2.3)

Obviously, maximizing ELBO is equivalent to minimizing the KL divergence. Given the fact
that KL divergence is non-negative, we observe that

ELBO(q) ≤ log p(x) (2.4)
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which indicates the name of ELBO. This can also be derived from below,

log p(x) = log

ˆ
p(x, z) dz

= log

ˆ
p(x|z)p(z)q(z)

q(z)
dz

= logEq

[
p(x|z)p(z)

q(z)

]
≥ Eq log

[
p(x|z)p(z)

q(z)

]
Jensen’s Inequality

= Eq log p(x|z) + Eq log p(z)− Eq log q(z)

= ELBO(q) (2.5)

3 The Mean-field Variational Family and CAVI
We now focus on the mean-field variational family, where the latent variables are mutually
independent and each governed by a distinct factor in the variational density, e.g.

q(z) =
m∏
j=1

qj(zj) (3.1)

Regarding this mean-field variational family, we now introduce the most commonly used
alogrithm to solve this optimization problem: Coordinate ascent variational inference (CAVI).
The CAVI is based on the following observation: consider a member qj(zj), fix all the other
variational factors, the optimal qj(zj) is given by

q∗j (zj) ∝ exp {E−j [log p(zj |z−j , x)]} (3.2)

To see this result, according to chain rule in the probability,

p(z,x) = p(x)
m∏
k=1

p(zk|z1:k−1,x) (3.3)

For any given zj , consider it as the last member in the product, therefore the terms that are
related to qj(zj) in ELBO is

Eq[log p(zj |z−j ,x)]− Eq[log qj(zj)]

=

ˆ
qj(zj)Eq−j [log p(zj |z−j ,x)] dzj −

ˆ
qj(zj) log qj(zj) dzj (3.4)

To calculate the derivative of qj(zj) on ELBO, we first need to define the functional deriva-
tive.

Definition 3.1. Given a manifold M representing (continuous/smooth) functions ρ (with cer-
tain boundary conditions etc.), and a functional F defined as
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F :M → R

the functional derivative of F [ρ], denoted δF
δρ , is defined by

ˆ
δF

δρ
ϕ(x) dx = lim

ϵ→0

F [ρ+ ϵϕ]− F (ρ)
ϵ

=

[
d

dϵ
F [ρ+ ϵϕ]

]
ϵ=0

(3.5)

where ϕ is any nice function and ϕ = 0 on the boundary of the region of integration. The
quantity ϵϕ is called the variation of ρ. In other words,

ϕ→
[
d

dϵ
F [ρ+ ϵϕ]

]
ϵ=0

(3.6)

is a linear functional, so by the Riesz–Markov–Kakutani representation theorem, this func-
tional is given by integration against some measure. Then δF

δρ is defined to be the Radon–
Nikodym derivative of this measure.

Given a functional

F [ρ] =

ˆ
f(x, ρ(x),▽ρ(x)) dx (3.7)

and any function ϕ, the functional derivative of F [ρ] is,

ˆ
δF

δρ
ϕ(x) dx =

[
d

dϵ

ˆ
f(x, ρ(x) + ϵϕ(x),▽ρ(x) + ϵ▽ϕ(x)) dx

]
ϵ=0

=

ˆ (
∂f

∂ρ
ϕ+

∂f

∂▽ρ▽ϕ
)

dx

=

ˆ [
∂f

∂ρ
ϕ+ ▽ ·

(
∂f

∂▽ρϕ
)
−
(
▽ · ∂f

∂▽ρ

)
ϕ

]
dx

=

ˆ [
∂f

∂ρ
ϕ−

(
▽ · ∂f

∂▽ρ

)
ϕ

]
dx+

˛
S

(
∂f

∂▽ρϕ
)

dx, Gauss Theorem

=

ˆ [
∂f

∂ρ
ϕ−

(
▽ · ∂f

∂▽ρ

)
ϕ

]
dx, ϕ = 0 on S

=

ˆ [
∂f

∂ρ
−
(
▽ · ∂f

∂▽ρ

)]
ϕ dx (3.8)

Therefore, we have

ˆ [
δF

δρ
− ∂f

∂ρ
+

(
▽ · ∂f

∂▽ρ

)]
ϕ dx = 0 (3.9)

According to the fundamental lemma of calculus of variations below, we have

δF

δρ
=
∂f

∂ρ
− ▽ · ∂f

∂▽ρ (3.10)

which is called Euler–Lagrange equation. More properties of functional derivatives can be
found here.
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Theorem 3.2. Fundamental lemma of calculus of variations. If a continuous multivari-
able function f on an open set Ω ⊂ Rd satisfies the equality

ˆ
Ω
f(x)h(x) dx = 0 (3.11)

for all compactly supported smooth functions h on Ω, then f ≡ 0 on Ω.
Similarly, one may consider a continuous function f on the closure of Ω, assuming that h

vanishes on the boundary of Ω (rather than compactly supported).
Also, for discontinuous multivariable functions, Let Ω ⊂ Rd be an open set, and f ∈ L2(Ω)

satisfy the equality

ˆ
Ω
f(x)h(x) dx = 0 (3.12)

for all compactly supported smooth functions h on Ω. Then f ≡ 0.

Now let’s head back to (3.2), denote ELBO(q) = L, we have

∂L
∂qj(zj)

=
∂

∂qj(zj)

[ˆ
qj(zj)Eq−j [log p(zj |z−j ,x)] dzj −

ˆ
qj(zj) log qj(zj) dzj

]
= Eq−j [log p(zj |z−j ,x)]− log qj(zj)− 1 (3.13)

where we use the Euler–Lagrange equation (3.10) (note that this functional does not have
▽ρ term).

Therefore, the optimal qj(zj) is,

q∗j (zj) ∝ exp {E−j [log p(zj |z−j , x)]} (3.14)

which is equivalent to

q∗j (zj) ∝ exp {E−j [log p(zj , z−j , x)]} (3.15)

Algorithm 1: Coordinate Ascent Variational Inference (CAVI)
Data: A model p(x, z), a data set x
Result: A variational density q(z) =

∏m
j=1 qj(zj)

Initialize: Variational factors qj(zj);
while the ELBO has not converged do

for j ∈ 1, · · · ,m do
Set q∗j (zj) ∝ exp {E−j [log p(zj |z−j , x)]};

end
end
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4 Black Box Variational Inference
Stochastic Optimization
Under Mean-field assumptions, consider the ELBO

L(λ) ≜ Eqλ(z)[log p(x, z)− log q(z)] (4.1)

Let’s consider stochastic optimization method. Define f(x) to be the target function we
are going to maximize, and h(t) be the realization of a random variable whose expectation is
the gradient of f(x). Then, we can optimize the target iterally with

xt+1 ← xt + ρtht(x) (4.2)

where ρt is the learning rate. This converges to a maximum of f(x) when the learning rate
schedule follows the Robbins-Monro conditions

∞∑
t=1

ρt =∞,
∞∑
t=1

ρ2t <∞ (4.3)

As derived in the appendix of [4], the gradient of ELBO can be written as

▽λL = Eq[▽λ log q(z|λ)(log p(x, z)− log q(z|λ))] (4.4)

Therefore, we can use Monte-Carlo to do the stochastic optimization with

▽λL ≈
1

S

S∑
s=1

▽λ log q(zs|λ)(log p(x, zs)− log q(zs|λ)) (4.5)

where zs ∼ q(z|λ).

Rao-Blackwellization
In practice, people usually use the Rao-Blackwellization method to reduce the variance of
Monte-Carlo sampling. If we want to compute the expectation of a function Ef(x, y), Rao-
Blackwellization can be simplified as using conditional expectation f̂(x, y) = E(f(x, y)|x) as an
estimator, given the fact that

E [E(f(x, y)|x)] = E(f(x, y)) (4.6)

and

Var(f(x, y)) = E(Var(f(x, y)|x)) + Var(E(f(x, y)|x)) ≥ Var(E(f(x, y)|x)) (4.7)

This means that f̂(x, y) is a lower variance estimator than f(x, y). Due to the mean-field
assumption,
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E(f(x, Y )|x) =
ˆ
f(x, Y )p(x, Y )

p(x)
dY

=

ˆ
f(x, Y )p(x)p(Y )

p(x)
dY

=

ˆ
f(x, Y )p(Y ) dY

= EY f(x, Y ) (4.8)

Therefore, for each component of the gradient, we should compute expectations with respect
to the other factors. Derived from the supplement material of [4], we conclude that

▽λi
L = Eq(i)[▽λi

log q(zi|λi)(log pi(x, z(i))− log q(zi|λi))] (4.9)

where q(i) be the distribution of variables in the model that depend on the ith variable,
i.e., the Markov blanket of zi; and pi(x, z(i)) be the terms in the joint that depend on those
variables.

Control Variables
A control variate is a family of functions with equivalent expectation. Consider a function h,
which has a finite first moment, and a scalar a. Define f̂ to be

f̂(z) ≜ f(z)− a [h(z)− E(h(z))] (4.10)

Therefore, we can choose a to minimize te variance of f̂ :

Var(f̂) = Var(f) + a2Var(h)− 2aCov(f, h) (4.11)

where the minimal is obtained at a∗ = Cov(f,h)
Var(h) . Notice that when a = 0, f̂ = f , therefore the

minimal variance is no greater than f ’s variance.
Back to our algorithm, we can define

fi(z) = ▽λi
log q(zi|λi)(log pi(x, z)− log qi(z|λi))

hi(z) = ▽λi
log q(zi|λi) (4.12)

Note that

E(▽λi
log q(zi|λi)) = E

(
▽λi

q(zi|λi)
q(zi|λi)

)
=

ˆ
▽λi

q(zi|λi) dzi

= ▽λi

ˆ
q(zi|λi) dzi

= ▽λi
1 = 0 (4.13)

7



Therefore E(▽λi
log q(z|λi)) = 0. Moreover, we can use sampling value to estimate â∗i =

ˆCov(fi,hi)

V̂ar(hi)
. Finally, we can use the estimated gradient:

▽λi
L ≈ 1

S

S∑
s=1

▽λi
log qi(zs|λi)(log pi(x, zs)− log qi(zs|λi)− â∗i ), zs ∼ q(i)(z|λ) (4.14)

The logic of black box variational inference is as follows:
find a maximum value =⇒ use stochastic optimization =⇒ monto-carlo sampling to estimate

gradient =⇒ use Rao-Blackwellization and control variables to lower the sampling variance.

5 Reparameterization
We reparameterize the latent variable in terms of a known base distribution and a differen-
tiable transformation (such as a location-scale transformation or cumulative distribution func-
tion). For example, if qϕ(z) is a Gaussian distribution N (z|µ, σ2), with ϕ = {µ, σ2}, then the
location-scale transformation using the standard Normal as a base distribution allows us to
reparameterize z as:

z ∼ N (z|µ, σ2)⇔ z = µ+ σϵ, ϵ ∼ N (0, 1) (5.1)

Therefore, in the backpropogation step, we can exchange the following derivative on LHS
to the easier-to-compute one on the RHS.

▽λEqλ(z)[f(θ, λ, x, z)]⇔ ▽λEϵ∼N (0,1)[f(θ, λ, x, µ+ σϵ)] (5.2)

Notice that none of the expectations are with respect to distributions that depend on our model
parameters, so we can safely move a gradient symbol into them while maintaning equality. That
is, given a fixed X and ϵ, this function is deterministic and continuous in the parameters of p
and q, meaning backpropagation can compute a gradient that will work for stochastic gradient
descent.

▽λEϵ∼N (0,1)[f(θ, λ, x, µ+ σϵ)] = Eϵ∼N (0,1)[▽λf(θ, λ, x, µ+ σϵ)] (5.3)

6 Variational Inference with Normalizing flow
Finite Flows
A normalizing flow describes the transformation of a probability density through a sequence of
invertible mappings. By repeatedly applying the rule for change of variables, the initial density
“flows” through the sequence of invertible mappings. At the end of this sequence we obtain a
valid probability distribution and hence this type of flow is referred to as a normalizing flow.

The basic rule for transformation of densities considers an invertible, smooth mapping f :
Rd → Rd with inverse f1 = g, i.e. the composition g ◦ f(z) = z. If we use this mapping to
transform a random variable z with distribution q(z), the resulting random variable z′ = f(z)
has a distribution

q(z′) = q(z)

∣∣∣∣det∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det ∂f∂z′
∣∣∣∣−1

(6.1)
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where the last equality can be seen by applying the chain rule (inverse function theorem)
and is a property of Jacobians of invertible functions. We can construct arbitrarily complex
densities by composing several simple maps and successively applying (6.1). The density qK(z)
obtained by successively transforming a random variable z0 with distribution q0 through a chain
of K transformations fk is:

zK = fK ◦ · · · ◦ f2 ◦ f1(z0) (6.2)

log qk(zK) = log q0(z0)−
K∑
k=1

log

∣∣∣∣det ∂f

∂zk−1

∣∣∣∣ (6.3)

The path traversed by the random variables zk = fk(zk1) with initial distribution q0(z0) is
called the flow and the path formed by the successive distributions qk is a normalizing flow.

A property of such transformations, often referred to as the law of the unconscious statisti-
cian (LOTUS), is that expectations w.r.t. the transformed density qK can be computed without
explicitly knowing qK . Any expectation EqK [h(z)] can be written as an expectation under q0
as:

EqK [h(z)] = Eq0 [h(fK ◦ · · · ◦ f2 ◦ f1(z0)] (6.4)

which does not require computation of the the logdet-Jacobian terms when h(z) does not
depend on qK .

Infinitesimal Flows
Please refer to [5] for some introduction on infinitesimal flows like Langevin Flow as well as
Hamiltonian Flow.

Invertible Linear-time Transformations
We introduce two class of invertible linear-time transformations to compute the determinant
efficient.

We consider a family of transformations of the form:

f(z) = z+ uh(wT z+ b) (6.5)

where h(·) is a smooth element-wise non-linear function with first order derivative h′(·).

Lemma 6.1. Suppose A is an invertible square matrix and u, v are column vectors. Then the
matrix determinant lemma states that

det(A+ uvT ) = det(A)(1 + vTA−1u) (6.6)

we can compute the logdet-Jacobian term in O(D) time (D is the dimension of z):

∣∣∣∣det∂f∂z
∣∣∣∣ = |det(I+ uψ(z)T )| = |1 + uTψ(z)| (6.7)

where ψ(z) = h′(wT z+ b)w.
Therefore,
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ln qk(zK) = log q0(z0)−
K∑
k=1

log |1 + uT
k ψk(zk−1)| (6.8)

and the ELBO defined in (4.1) in this case can be written as

L(λ) = Eqλ(z)[log p(x, z)− log q(z)]

= Eq0(z)[log qK(zK)− log p(x, zK)]

= Eq0(z)[log qK(zK)]− Eq0(z)[log p(x, zK)]− Eq0(z)

[
K∑
k=1

log[1 + uT
k ψk(zk−1)]

]
(6.9)

we can therefore construct an inference model using a deep neural network to build a map-
ping from the observations x to the parameters of the initial density q0 = N (µ, σ2).

The flow defined by the transformation (6.5) modifies the initial density q0 by applying a
series of contractions and expansions in the direction perpendicular to the hyperplane wT z+b =
0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transformations that modify an initial density
q0 around a reference point z0. The transformation family is:

f(z) = z+ βh(α, r)(z− z0), r = |z− z0|, h(α, r) =
1

α+ r
(6.10)

and similiarly,

∣∣∣∣det∂f∂z
∣∣∣∣ = [1 + βh(α, r)]d−1[1 + βh(α, r) + βh′(α, r)r] (6.11)
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