Bayesian Machine Learning
1. General Machine Learning
- Simplified PAC-Bayesian Margin Bounds
- Latent Dirichlet Allocation
- Relational Dependency Networks
2. MCMC
- MCMC using Hamiltonian dynamics
- A Complete Recipe for Stochastic Gradient MCMC
- Riemann Manifold Langevin and Hamiltonian Monte Carlo
- A-NICE-MC: Adversarial Training for MCMC
- NICE: Non-linear Independent Components Estimation
- Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
3. Variational Autoencoder
- Auto-Encoding Variational Bayes
- Tutorial on Variational Autoencoders
4. Variational Inference
- Black Box Variational Inference
- Variational Inference - A Review for Statisticians
- Variational Inference with Normalizing Flow
- MADE- Masked Autoencoder for Distribution Estimation
- Masked Autoregressive Flow for Density Estimation
- Neural Autoregressive Distribution Estimation