Bayesian Machine Learning

1. General Machine Learning

  1. Simplified PAC-Bayesian Margin Bounds
  2. Latent Dirichlet Allocation
  3. Relational Dependency Networks

2. MCMC

  1. MCMC using Hamiltonian dynamics
  2. A Complete Recipe for Stochastic Gradient MCMC
  3. Riemann Manifold Langevin and Hamiltonian Monte Carlo
  4. A-NICE-MC: Adversarial Training for MCMC
  5. NICE: Non-linear Independent Components Estimation
  6. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap

3. Variational Autoencoder

  1. Auto-Encoding Variational Bayes
  2. Tutorial on Variational Autoencoders

4. Variational Inference

  1. Black Box Variational Inference
  2. Variational Inference - A Review for Statisticians
  3. Variational Inference with Normalizing Flow
  4. MADE- Masked Autoencoder for Distribution Estimation
  5. Masked Autoregressive Flow for Density Estimation
  6. Neural Autoregressive Distribution Estimation

results matching ""

    No results matching ""